BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26817578)

  • 1. Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects.
    Zhang R; Wu X; Yang J
    Nanoscale; 2016 Feb; 8(7):4001-6. PubMed ID: 26817578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery.
    Li W; Yang Y; Zhang G; Zhang YW
    Nano Lett; 2015 Mar; 15(3):1691-7. PubMed ID: 25664808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li-S batteries.
    Mukherjee S; Kavalsky L; Chattopadhyay K; Singh CV
    Nanoscale; 2018 Dec; 10(45):21335-21352. PubMed ID: 30426120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study.
    Mukherjee S; Banwait A; Grixti S; Koratkar N; Singh CV
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5373-5384. PubMed ID: 29350901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective phosphorene as an anode material for high-performance Li-, Na-, and K-ion batteries: a first-principles study.
    Atashzar SM; Javadian S; Gharibi H; Rezaei Z
    Nanoscale; 2020 Oct; 12(39):20364-20373. PubMed ID: 33016970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li-ion adsorption and diffusion on two-dimensional silicon with defects: a first principles study.
    Setiadi J; Arnold MD; Ford MJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10690-5. PubMed ID: 24090433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study.
    Zhang C; Yu M; Anderson G; Dharmasena RR; Sumanasekera G
    Nanotechnology; 2017 Feb; 28(7):075401. PubMed ID: 28081015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Could Borophene Be Used as a Promising Anode Material for High-Performance Lithium Ion Battery?
    Zhang Y; Wu ZF; Gao PF; Zhang SL; Wen YH
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22175-81. PubMed ID: 27487298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point defects in lines in single crystalline phosphorene: directional migration and tunable band gaps.
    Li X; Ma L; Wang D; Zeng XC; Wu X; Yang J
    Nanoscale; 2016 Oct; 8(41):17801-17808. PubMed ID: 27722611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles prediction of a two-dimensional vanadium carbide (MXene) as the anode for lithium ion batteries.
    Nyamdelger S; Ochirkhuyag T; Sangaa D; Odkhuu D
    Phys Chem Chem Phys; 2020 Mar; 22(10):5807-5818. PubMed ID: 32105283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries.
    Guo GC; Wang D; Wei XL; Zhang Q; Liu H; Lau WM; Liu LM
    J Phys Chem Lett; 2015 Dec; 6(24):5002-8. PubMed ID: 26623923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles analysis of defect-mediated Li adsorption on graphene.
    Yildirim H; Kinaci A; Zhao ZJ; Chan MK; Greeley JP
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21141-50. PubMed ID: 25394787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced ion diffusion induced by structural transition of Li-modified borophosphene.
    Wang S; Zhang W; Lu C; Ding Y; Yin J; Zhang P; Jiang Y
    Phys Chem Chem Phys; 2020 Sep; 22(37):21326-21333. PubMed ID: 32935713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-carbon-based porous topological semimetal for Li-ion battery anode material.
    Liu J; Wang S; Sun Q
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):651-656. PubMed ID: 28069940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen Vacancy Enhanced Two-Dimensional Lithium Titanate for Ultrafast and Long-Life Bifunctional Lithium Storage.
    Liu Z; Huang Y; Cai Y; Wang X; Zhang Y; Guo Y; Ding J; Cheng W
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18876-18886. PubMed ID: 33871971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defects, Lithium Mobility and Tetravalent Dopants in the Li
    Kuganathan N; Kordatos A; Kelaidis N; Chroneos A
    Sci Rep; 2019 Feb; 9(1):2192. PubMed ID: 30778085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalously high Na
    Ling C; Zhang R
    Phys Chem Chem Phys; 2017 Apr; 19(15):10036-10041. PubMed ID: 28367566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition-Metal Phosphorus Trisulfides and its Vacancy Defects: Emergence of a New Class of Anode Material for Li-Ion Batteries.
    Jana R; Chowdhury C; Datta A
    ChemSusChem; 2020 Aug; 13(15):3855-3864. PubMed ID: 32459038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model.
    Kong XK; Chen QW
    Phys Chem Chem Phys; 2013 Aug; 15(31):12982-7. PubMed ID: 23817454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.