These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 26817680)
1. Carbon-Impurity Affected Depth Elemental Distribution in Solution-Processed Inorganic Thin Films for Solar Cell Application. Rehan S; Kim KY; Han J; Eo YJ; Gwak J; Ahn SK; Yun JH; Yoon K; Cho A; Ahn S ACS Appl Mater Interfaces; 2016 Mar; 8(8):5261-72. PubMed ID: 26817680 [TBL] [Abstract][Full Text] [Related]
2. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells. Hossain MA; Wang M; Choy KL ACS Appl Mater Interfaces; 2015 Oct; 7(40):22497-503. PubMed ID: 26390182 [TBL] [Abstract][Full Text] [Related]
3. Aqueous Solution-Phase Selenized CuIn(S,Se)2 Thin Film Solar Cells Annealed under Inert Atmosphere. Oh Y; Yang W; Kim J; Woo K; Moon J ACS Appl Mater Interfaces; 2015 Oct; 7(40):22570-7. PubMed ID: 26394216 [TBL] [Abstract][Full Text] [Related]
4. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency. Ahn S; Choi YJ; Kim K; Eo YJ; Cho A; Gwak J; Yun JH; Shin K; Ahn SK; Yoon K ChemSusChem; 2013 Jul; 6(7):1282-7. PubMed ID: 23681958 [TBL] [Abstract][Full Text] [Related]
5. Cu(In,Ga)(S,Se)₂ thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film. Septina W; Kurihara M; Ikeda S; Nakajima Y; Hirano T; Kawasaki Y; Harada T; Matsumura M ACS Appl Mater Interfaces; 2015 Apr; 7(12):6472-9. PubMed ID: 25774908 [TBL] [Abstract][Full Text] [Related]
6. CuInSe2 (CIS) thin films prepared from amorphous Cu-In-Se nanoparticle precursors for solar cell application. Ahn S; Kim K; Cho A; Gwak J; Yun JH; Shin K; Ahn S; Yoon K ACS Appl Mater Interfaces; 2012 Mar; 4(3):1530-6. PubMed ID: 22391391 [TBL] [Abstract][Full Text] [Related]
7. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders. Yang Y; Wang G; Zhao W; Tian Q; Huang L; Pan D ACS Appl Mater Interfaces; 2015 Jan; 7(1):460-4. PubMed ID: 25494493 [TBL] [Abstract][Full Text] [Related]
8. Physical and chemical aspects at the interface and in the bulk of CuInSe Ishizuka S; Nishinaga J; Beppu K; Maeda T; Aoyagi F; Wada T; Yamada A; Chantana J; Nishimura T; Minemoto T; Islam MM; Sakurai T; Terada N Phys Chem Chem Phys; 2022 Jan; 24(3):1262-1285. PubMed ID: 34935800 [TBL] [Abstract][Full Text] [Related]
9. Aqueous-Solution-Processed Cu Suryawanshi MP; Ghorpade UV; Suryawanshi UP; He M; Kim J; Gang MG; Patil PS; Moholkar AV; Yun JH; Kim JH ACS Omega; 2017 Dec; 2(12):9211-9220. PubMed ID: 31457436 [TBL] [Abstract][Full Text] [Related]
10. Colloidal solution-processed CuInSe2 solar cells with significantly improved efficiency up to 9% by morphological improvement. Lim YS; Kwon HS; Jeong J; Kim JY; Kim H; Ko MJ; Jeong U; Lee DK ACS Appl Mater Interfaces; 2014 Jan; 6(1):259-67. PubMed ID: 24328265 [TBL] [Abstract][Full Text] [Related]
11. Chalcogenization-Derived Band Gap Grading in Solution-Processed CuIn(x)Ga(1-x)(Se,S)₂ Thin-Film Solar Cells. Park SJ; Jeon HS; Cho JW; Hwang YJ; Park KS; Shim HS; Song JK; Cho Y; Kim DW; Kim J; Min BK ACS Appl Mater Interfaces; 2015 Dec; 7(49):27391-6. PubMed ID: 26595379 [TBL] [Abstract][Full Text] [Related]
12. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source. Guo J; Pei Y; Zhou Z; Zhou W; Kou D; Wu S Nanoscale Res Lett; 2015 Dec; 10(1):1045. PubMed ID: 26293494 [TBL] [Abstract][Full Text] [Related]
13. Phase-Separation-Induced Crystal Growth for Large-Grained Cu Huang L; Wei S; Pan D ACS Appl Mater Interfaces; 2018 Oct; 10(41):35069-35078. PubMed ID: 30247020 [TBL] [Abstract][Full Text] [Related]
14. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. Mainz R; Walker BC; Schmidt SS; Zander O; Weber A; Rodriguez-Alvarez H; Just J; Klaus M; Agrawal R; Unold T Phys Chem Chem Phys; 2013 Nov; 15(41):18281-9. PubMed ID: 24068197 [TBL] [Abstract][Full Text] [Related]
15. 8.01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks. Wang W; Han SY; Sung SJ; Kim DH; Chang CH Phys Chem Chem Phys; 2012 Aug; 14(31):11154-9. PubMed ID: 22782084 [TBL] [Abstract][Full Text] [Related]
16. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells. Sohn SH; Han NS; Park YJ; Park SM; An HS; Kim DW; Min BK; Song JK Phys Chem Chem Phys; 2014 Dec; 16(48):27112-8. PubMed ID: 25387997 [TBL] [Abstract][Full Text] [Related]
17. Boosting Solar Cell Performance via Centrally Localized Ag in Solution-Processed Cu(In,Ga)(S,Se) Kim B; Park GS; Kim JH; Park SY; Kim DS; Lee DK; Won DH; Kwon S; Kim DW; Kang Y; Jeong C; Min BK ACS Appl Mater Interfaces; 2020 Aug; 12(32):36082-36091. PubMed ID: 32664721 [TBL] [Abstract][Full Text] [Related]
18. Interfacial alkali diffusion control in chalcopyrite thin-film solar cells. Ishizuka S; Yamada A; Fons PJ; Shibata H; Niki S ACS Appl Mater Interfaces; 2014 Aug; 6(16):14123-30. PubMed ID: 25004458 [TBL] [Abstract][Full Text] [Related]
19. Spatial element distribution control in a fully solution-processed nanocrystals-based 8.6% Cu2ZnSn(S,Se)4 device. Hsu WC; Zhou H; Luo S; Song TB; Hsieh YT; Duan HS; Ye S; Yang W; Hsu CJ; Jiang C; Bob B; Yang Y ACS Nano; 2014 Sep; 8(9):9164-72. PubMed ID: 25106060 [TBL] [Abstract][Full Text] [Related]
20. Depth-Profiling Electronic and Structural Properties of Cu(In,Ga)(S,Se)2 Thin-Film Solar Cell. Chiang CY; Hsiao SW; Wu PJ; Yang CS; Chen CH; Chou WC ACS Appl Mater Interfaces; 2016 Sep; 8(36):24152-60. PubMed ID: 27505175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]