BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26817708)

  • 1. Medoidshift clustering applied to genomic bulk tumor data.
    Roman T; Xie L; Schwartz R
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):6. PubMed ID: 26817708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor Copy Number Deconvolution Integrating Bulk and Single-Cell Sequencing Data.
    Lei H; Lyu B; Gertz EM; Schäffer AA; Shi X; Wu K; Li G; Xu L; Hou Y; Dean M; Schwartz R
    J Comput Biol; 2020 Apr; 27(4):565-598. PubMed ID: 32181683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust unmixing of tumor states in array comparative genomic hybridization data.
    Tolliver D; Tsourakakis C; Subramanian A; Shackney S; Schwartz R
    Bioinformatics; 2010 Jun; 26(12):i106-14. PubMed ID: 20529894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated deconvolution of structured mixtures from heterogeneous tumor genomic data.
    Roman T; Xie L; Schwartz R
    PLoS Comput Biol; 2017 Oct; 13(10):e1005815. PubMed ID: 29059177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simplicial complex-based approach to unmixing tumor progression data.
    Roman T; Nayyeri A; Fasy BT; Schwartz R
    BMC Bioinformatics; 2015 Aug; 16():254. PubMed ID: 26264682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint Clustering of Single-Cell Sequencing and Fluorescence In Situ Hybridization Data for Reconstructing Clonal Heterogeneity in Cancers.
    Fu X; Lei H; Tao Y; Heselmeyer-Haddad K; Torres I; Dean M; Ried T; Schwartz R
    J Comput Biol; 2021 Nov; 28(11):1035-1051. PubMed ID: 34612714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deconvolution and phylogeny inference of structural variations in tumor genomic samples.
    Eaton J; Wang J; Schwartz R
    Bioinformatics; 2018 Jul; 34(13):i357-i365. PubMed ID: 29950001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor heterogeneity assessed by sequencing and fluorescence in situ hybridization (FISH) data.
    Lei H; Gertz EM; Schäffer AA; Fu X; Tao Y; Heselmeyer-Haddad K; Torres I; Li G; Xu L; Hou Y; Wu K; Shi X; Dean M; Ried T; Schwartz R
    Bioinformatics; 2021 Dec; 37(24):4704-4711. PubMed ID: 34289030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution Genomic Profiling of Disseminated Tumor Cells in Prostate Cancer.
    Wu Y; Schoenborn JR; Morrissey C; Xia J; Larson S; Brown LG; Qu X; Lange PH; Nelson PS; Vessella RL; Fang M
    J Mol Diagn; 2016 Jan; 18(1):131-43. PubMed ID: 26607774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring models of multiscale copy number evolution for single-tumor phylogenetics.
    Chowdhury SA; Gertz EM; Wangsa D; Heselmeyer-Haddad K; Ried T; Schäffer AA; Schwartz R
    Bioinformatics; 2015 Jun; 31(12):i258-67. PubMed ID: 26072490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying unmixing to gene expression data for tumor phylogeny inference.
    Schwartz R; Shackney SE
    BMC Bioinformatics; 2010 Jan; 11():42. PubMed ID: 20089185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference of tumor phylogenies from genomic assays on heterogeneous samples.
    Subramanian A; Shackney S; Schwartz R
    J Biomed Biotechnol; 2012; 2012():797812. PubMed ID: 22654484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic landscape of pancreatic neuroendocrine tumors.
    Gebauer N; Schmidt-Werthern C; Bernard V; Feller AC; Keck T; Begum N; Rades D; Lehnert H; Brabant G; Thorns C
    World J Gastroenterol; 2014 Dec; 20(46):17498-506. PubMed ID: 25516664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progression risk assessments of individual non-invasive gastric neoplasms by genomic copy-number profile and mucin phenotype.
    Vo DT; Nakayama T; Yamamoto H; Mukaisho K; Hattori T; Sugihara H
    BMC Med Genomics; 2015 Feb; 8():6. PubMed ID: 25881098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors.
    Deshwar AG; Vembu S; Yung CK; Jang GH; Stein L; Morris Q
    Genome Biol; 2015 Feb; 16(1):35. PubMed ID: 25786235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expectation-maximization method for reconstructing tumor phylogenies from single-cell data.
    Pennington G; Smith CA; Shackney S; Schwartz R
    Comput Syst Bioinformatics Conf; 2006; ():371-80. PubMed ID: 17369656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of chromosomal copy-number alterations in intrahepatic cholangiocarcinoma.
    Dalmasso C; Carpentier W; Guettier C; Camilleri-Broët S; Borelli WV; Campos Dos Santos CR; Castaing D; Duclos-Vallée JC; Broët P
    BMC Cancer; 2015 Mar; 15():126. PubMed ID: 25879652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring progression models for CGH data.
    Liu J; Bandyopadhyay N; Ranka S; Baudis M; Kahveci T
    Bioinformatics; 2009 Sep; 25(17):2208-15. PubMed ID: 19528087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of clone- and haplotype-specific cancer genome karyotypes from bulk tumor samples.
    Aganezov S; Raphael BJ
    Genome Res; 2020 Sep; 30(9):1274-1290. PubMed ID: 32887685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational methods for identification of recurrent copy number alteration patterns by array CGH.
    Shah SP
    Cytogenet Genome Res; 2008; 123(1-4):343-51. PubMed ID: 19287173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.