These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
746 related articles for article (PubMed ID: 26818015)
1. Environmental assessment of the degradation potential of mushroom fruit bodies of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. towards synthetic azo dyes and contaminating effluents collected from textile industries in Karnataka, India. Skariyachan S; Prasanna A; Manjunath SP; Karanth SS; Nazre A Environ Monit Assess; 2016 Feb; 188(2):121. PubMed ID: 26818015 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of two wild types of Pleurotus ostreatus (MCC07 and MCC20) isolated from nature for their ability to decolorize Benazol Black ZN textile dye in comparison to some commercial types of white rot fungi: Pleurotus ostreatus, Pleurotus djamor, and Pleurotus citrinopileatus. Kalmiş E; Azbar N; Kalyoncu F Can J Microbiol; 2008 May; 54(5):366-70. PubMed ID: 18449221 [TBL] [Abstract][Full Text] [Related]
3. Cloning and characterization of FMN-dependent azoreductases from textile industry effluent identified through metagenomic sequencing. Mishra R; Modi A; Pandit R; Sadhwani J; Joshi C; Patel AK J Air Waste Manag Assoc; 2024 May; 74(5):335-344. PubMed ID: 38407923 [TBL] [Abstract][Full Text] [Related]
4. Textile azo dyes discolouration using spent mushroom substrate: enzymatic degradation and adsorption mechanisms. Schallemberger JB; Libardi N; Dalari BLSK; Chaves MB; Nagel Hassemer ME Environ Technol; 2023 Apr; 44(9):1265-1286. PubMed ID: 34709981 [TBL] [Abstract][Full Text] [Related]
5. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Routoula E; Patwardhan SV Environ Sci Technol; 2020 Jan; 54(2):647-664. PubMed ID: 31913605 [TBL] [Abstract][Full Text] [Related]
6. Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. Martins MA; Lima N; Silvestre AJ; Queiroz MJ Chemosphere; 2003 Aug; 52(6):967-73. PubMed ID: 12781230 [TBL] [Abstract][Full Text] [Related]
7. Synergistic role of bacterial consortium to biodegrade toxic dyes containing wastewater and its simultaneous reuse as an added value. Khan S; Bhardwaj U; Iqbal HMN; Joshi N Chemosphere; 2021 Dec; 284():131273. PubMed ID: 34216920 [TBL] [Abstract][Full Text] [Related]
8. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Asad S; Amoozegar MA; Pourbabaee AA; Sarbolouki MN; Dastgheib SM Bioresour Technol; 2007 Aug; 98(11):2082-8. PubMed ID: 17055263 [TBL] [Abstract][Full Text] [Related]
9. Screening and identification of newly isolated Pseudomonas sp. for biodegrading the textile azo dye C.I. Procion Red H-3B. Bera SP; Tank SK J Appl Microbiol; 2021 Jun; 130(6):1949-1959. PubMed ID: 33145923 [TBL] [Abstract][Full Text] [Related]
10. Four marine-derived fungi for bioremediation of raw textile mill effluents. Verma AK; Raghukumar C; Verma P; Shouche YS; Naik CG Biodegradation; 2010 Apr; 21(2):217-33. PubMed ID: 19763847 [TBL] [Abstract][Full Text] [Related]
11. Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate. Fernandes Â; Barros L; Martins A; Herbert P; Ferreira IC Food Chem; 2015 Feb; 169():396-400. PubMed ID: 25236243 [TBL] [Abstract][Full Text] [Related]
12. Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay. Verma Y Toxicol Ind Health; 2008 Aug; 24(7):491-500. PubMed ID: 19028775 [TBL] [Abstract][Full Text] [Related]
13. Exploring the decolorization efficiency and biodegradation mechanisms of different functional textile azo dyes by Streptomyces albidoflavus 3MGH. El Awady ME; El-Shall FN; Mohamed GE; Abd-Elaziz AM; Abdel-Monem MO; Hassan MG BMC Microbiol; 2024 Jun; 24(1):210. PubMed ID: 38877404 [TBL] [Abstract][Full Text] [Related]
14. Biodegradation of commercial textile reactive dye mixtures by industrial effluent adapted bacterial consortium VITPBC6: a potential technique for treating textile effluents. Saha P; Rao KVB Biodegradation; 2024 Apr; 35(2):173-193. PubMed ID: 37656273 [TBL] [Abstract][Full Text] [Related]
15. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Enayatzamir K; Alikhani HA; Yakhchali B; Tabandeh F; Rodríguez-Couto S Environ Sci Pollut Res Int; 2010 Jan; 17(1):145-53. PubMed ID: 19259719 [TBL] [Abstract][Full Text] [Related]
16. Degradation and detoxification of reactive yellow dyes by Scedosporium apiospermum: a mycoremedial approach. Kumaravel V; Bankole PO; Jooju B; Sadasivam SK Arch Microbiol; 2022 May; 204(6):324. PubMed ID: 35570201 [TBL] [Abstract][Full Text] [Related]
17. Ecotoxic potential of a presumably non-toxic azo dye. Rawat D; Sharma RS; Karmakar S; Arora LS; Mishra V Ecotoxicol Environ Saf; 2018 Feb; 148():528-537. PubMed ID: 29125956 [TBL] [Abstract][Full Text] [Related]
18. Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Sudarshan S; Harikrishnan S; RathiBhuvaneswari G; Alamelu V; Aanand S; Rajasekar A; Govarthanan M J Appl Microbiol; 2023 Feb; 134(2):. PubMed ID: 36724285 [TBL] [Abstract][Full Text] [Related]
19. Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative. Goud BS; Cha HL; Koyyada G; Kim JH Curr Microbiol; 2020 Nov; 77(11):3240-3255. PubMed ID: 32951066 [TBL] [Abstract][Full Text] [Related]