BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26818075)

  • 1. Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility.
    Vrljicak P; Tao S; Varshney GK; Quach HN; Joshi A; LaFave MC; Burgess SM; Sampath K
    G3 (Bethesda); 2016 Apr; 6(4):805-17. PubMed ID: 26818075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of Tol2 transposon reintegration in zebrafish.
    Kondrychyn I; Garcia-Lecea M; Emelyanov A; Parinov S; Korzh V
    BMC Genomics; 2009 Sep; 10():418. PubMed ID: 19737393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient transposition of the Tol2 transposable element from a single-copy donor in zebrafish.
    Urasaki A; Asakawa K; Kawakami K
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19827-32. PubMed ID: 19060204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration site selection by retroviruses and transposable elements in eukaryotes.
    Sultana T; Zamborlini A; Cristofari G; Lesage P
    Nat Rev Genet; 2017 May; 18(5):292-308. PubMed ID: 28286338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin landscapes of retroviral and transposon integration profiles.
    de Jong J; Akhtar W; Badhai J; Rust AG; Rad R; Hilkens J; Berns A; van Lohuizen M; Wessels LF; de Ridder J
    PLoS Genet; 2014 Apr; 10(4):e1004250. PubMed ID: 24721906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors.
    Sokol M; Wabl M; Ruiz IR; Pedersen FS
    Retrovirology; 2014 May; 11():36. PubMed ID: 24886479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus.
    Yoshida J; Akagi K; Misawa R; Kokubu C; Takeda J; Horie K
    Sci Rep; 2017 Mar; 7():43613. PubMed ID: 28252665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based prediction of insertion-site preferences of transposons into chromosomes.
    Geurts AM; Hackett CS; Bell JB; Bergemann TL; Collier LS; Carlson CM; Largaespada DA; Hackett PB
    Nucleic Acids Res; 2006; 34(9):2803-11. PubMed ID: 16717285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient germ-line transmission of proviral insertions in zebrafish.
    Gaiano N; Allende M; Amsterdam A; Kawakami K; Hopkins N
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7777-82. PubMed ID: 8755552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration target site selection for retroviruses and transposable elements.
    Wu X; Burgess SM
    Cell Mol Life Sci; 2004 Oct; 61(19-20):2588-96. PubMed ID: 15526164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposon vectors for gene-trap insertional mutagenesis in vertebrates.
    Clark KJ; Geurts AM; Bell JB; Hackett PB
    Genesis; 2004 Aug; 39(4):225-33. PubMed ID: 15286994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy.
    Meir YJ; Weirauch MT; Yang HS; Chung PC; Yu RK; Wu SC
    BMC Biotechnol; 2011 Mar; 11():28. PubMed ID: 21447194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage.
    Kawakami K; Shima A; Kawakami N
    Proc Natl Acad Sci U S A; 2000 Oct; 97(21):11403-8. PubMed ID: 11027340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transposon tools and methods in zebrafish.
    Kawakami K
    Dev Dyn; 2005 Oct; 234(2):244-54. PubMed ID: 16110506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient and stable transgenesis using tol2 transposon vectors.
    Kikuta H; Kawakami K
    Methods Mol Biol; 2009; 546():69-84. PubMed ID: 19378098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resources for targeted insertional and deletional mutagenesis in Arabidopsis.
    Zhang S; Raina S; Li H; Li J; Dec E; Ma H; Huang H; Fedoroff NV
    Plant Mol Biol; 2003 Sep; 53(1-2):133-50. PubMed ID: 14756312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions.
    Wang D; Jao LE; Zheng N; Dolan K; Ivey J; Zonies S; Wu X; Wu K; Yang H; Meng Q; Zhu Z; Zhang B; Lin S; Burgess SM
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12428-33. PubMed ID: 17640903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals.
    Singh J; Zhang S; Chen C; Cooper L; Bregitzer P; Sturbaum A; Hayes PM; Lemaux PG
    Plant Mol Biol; 2006 Dec; 62(6):937-50. PubMed ID: 17004014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the recently discovered hAT transposon TcBuster in human cells.
    Woodard LE; Li X; Malani N; Kaja A; Hice RH; Atkinson PW; Bushman FD; Craig NL; Wilson MH
    PLoS One; 2012; 7(11):e42666. PubMed ID: 23166581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapped Ds/T-DNA launch pads for functional genomics in barley.
    Zhao T; Palotta M; Langridge P; Prasad M; Graner A; Schulze-Lefert P; Koprek T
    Plant J; 2006 Sep; 47(5):811-26. PubMed ID: 16889649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.