These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26818075)

  • 1. Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility.
    Vrljicak P; Tao S; Varshney GK; Quach HN; Joshi A; LaFave MC; Burgess SM; Sampath K
    G3 (Bethesda); 2016 Apr; 6(4):805-17. PubMed ID: 26818075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of Tol2 transposon reintegration in zebrafish.
    Kondrychyn I; Garcia-Lecea M; Emelyanov A; Parinov S; Korzh V
    BMC Genomics; 2009 Sep; 10():418. PubMed ID: 19737393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient transposition of the Tol2 transposable element from a single-copy donor in zebrafish.
    Urasaki A; Asakawa K; Kawakami K
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19827-32. PubMed ID: 19060204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration site selection by retroviruses and transposable elements in eukaryotes.
    Sultana T; Zamborlini A; Cristofari G; Lesage P
    Nat Rev Genet; 2017 May; 18(5):292-308. PubMed ID: 28286338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin landscapes of retroviral and transposon integration profiles.
    de Jong J; Akhtar W; Badhai J; Rust AG; Rad R; Hilkens J; Berns A; van Lohuizen M; Wessels LF; de Ridder J
    PLoS Genet; 2014 Apr; 10(4):e1004250. PubMed ID: 24721906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors.
    Sokol M; Wabl M; Ruiz IR; Pedersen FS
    Retrovirology; 2014 May; 11():36. PubMed ID: 24886479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus.
    Yoshida J; Akagi K; Misawa R; Kokubu C; Takeda J; Horie K
    Sci Rep; 2017 Mar; 7():43613. PubMed ID: 28252665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based prediction of insertion-site preferences of transposons into chromosomes.
    Geurts AM; Hackett CS; Bell JB; Bergemann TL; Collier LS; Carlson CM; Largaespada DA; Hackett PB
    Nucleic Acids Res; 2006; 34(9):2803-11. PubMed ID: 16717285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient germ-line transmission of proviral insertions in zebrafish.
    Gaiano N; Allende M; Amsterdam A; Kawakami K; Hopkins N
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7777-82. PubMed ID: 8755552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration target site selection for retroviruses and transposable elements.
    Wu X; Burgess SM
    Cell Mol Life Sci; 2004 Oct; 61(19-20):2588-96. PubMed ID: 15526164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposon vectors for gene-trap insertional mutagenesis in vertebrates.
    Clark KJ; Geurts AM; Bell JB; Hackett PB
    Genesis; 2004 Aug; 39(4):225-33. PubMed ID: 15286994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy.
    Meir YJ; Weirauch MT; Yang HS; Chung PC; Yu RK; Wu SC
    BMC Biotechnol; 2011 Mar; 11():28. PubMed ID: 21447194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage.
    Kawakami K; Shima A; Kawakami N
    Proc Natl Acad Sci U S A; 2000 Oct; 97(21):11403-8. PubMed ID: 11027340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transposon tools and methods in zebrafish.
    Kawakami K
    Dev Dyn; 2005 Oct; 234(2):244-54. PubMed ID: 16110506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient and stable transgenesis using tol2 transposon vectors.
    Kikuta H; Kawakami K
    Methods Mol Biol; 2009; 546():69-84. PubMed ID: 19378098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resources for targeted insertional and deletional mutagenesis in Arabidopsis.
    Zhang S; Raina S; Li H; Li J; Dec E; Ma H; Huang H; Fedoroff NV
    Plant Mol Biol; 2003 Sep; 53(1-2):133-50. PubMed ID: 14756312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions.
    Wang D; Jao LE; Zheng N; Dolan K; Ivey J; Zonies S; Wu X; Wu K; Yang H; Meng Q; Zhu Z; Zhang B; Lin S; Burgess SM
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12428-33. PubMed ID: 17640903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals.
    Singh J; Zhang S; Chen C; Cooper L; Bregitzer P; Sturbaum A; Hayes PM; Lemaux PG
    Plant Mol Biol; 2006 Dec; 62(6):937-50. PubMed ID: 17004014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the recently discovered hAT transposon TcBuster in human cells.
    Woodard LE; Li X; Malani N; Kaja A; Hice RH; Atkinson PW; Bushman FD; Craig NL; Wilson MH
    PLoS One; 2012; 7(11):e42666. PubMed ID: 23166581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapped Ds/T-DNA launch pads for functional genomics in barley.
    Zhao T; Palotta M; Langridge P; Prasad M; Graner A; Schulze-Lefert P; Koprek T
    Plant J; 2006 Sep; 47(5):811-26. PubMed ID: 16889649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.