These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26818435)

  • 1. Surface activation of CNT Webs towards layer by layer assembly of biosensors.
    Musameh M; Huynh CP; Hickey M; Kyratzis IL
    Analyst; 2016 Apr; 141(9):2748-55. PubMed ID: 26818435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-by-layer assembled carbon nanotube-acetylcholinesterase/biopolymer renewable interfaces: SPR and electrochemical characterization.
    Zhang Y; Arugula MA; Kirsch JS; Yang X; Olsen E; Simonian AL
    Langmuir; 2015 Feb; 31(4):1462-8. PubMed ID: 25562675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents.
    Liu G; Lin Y
    Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.
    Barsan MM; Ghica ME; Brett CM
    Anal Chim Acta; 2015 Jun; 881():1-23. PubMed ID: 26041516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.
    Sun Y; He K; Zhang Z; Zhou A; Duan H
    Biosens Bioelectron; 2015 Jun; 68():358-364. PubMed ID: 25603401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.
    Vashist SK; Zheng D; Al-Rubeaan K; Luong JH; Sheu FS
    Biotechnol Adv; 2011; 29(2):169-88. PubMed ID: 21034805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical biosensors based on redox carbon nanotubes prepared by noncovalent functionalization with 1,10-phenanthroline-5,6-dione.
    Mao X; Wu Y; Xu L; Cao X; Cui X; Zhu L
    Analyst; 2011 Jan; 136(2):293-8. PubMed ID: 20957284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes.
    Gong K; Dong Y; Xiong S; Chen Y; Mao L
    Biosens Bioelectron; 2004 Sep; 20(2):253-9. PubMed ID: 15308229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.
    Gao G; Vecitis CD
    Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nanotube casting on screen-printed carbon electrodes.
    Lee CH; Wang SC; Yuan CJ; Wen MF; Chang KS
    Biosens Bioelectron; 2007 Jan; 22(6):877-84. PubMed ID: 16644200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunosensor based on carbon nanotube/manganese dioxide electrochemical tags.
    Tu MC; Chen HY; Wang Y; Moochhala SM; Alagappan P; Liedberg B
    Anal Chim Acta; 2015 Jan; 853():228-233. PubMed ID: 25467463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube/teflon composite electrochemical sensors and biosensors.
    Wang J; Musameh M
    Anal Chem; 2003 May; 75(9):2075-9. PubMed ID: 12720343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors.
    Alwarappan S; Liu G; Li CZ
    Nanomedicine; 2010 Feb; 6(1):52-7. PubMed ID: 19616125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode.
    Deng C; Chen J; Nie Z; Si S
    Biosens Bioelectron; 2010 Sep; 26(1):213-9. PubMed ID: 20620040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode.
    Wu BY; Hou SH; Yin F; Zhao ZX; Wang YY; Wang XS; Chen Q
    Biosens Bioelectron; 2007 Jun; 22(12):2854-60. PubMed ID: 17212983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes.
    Zhang M; Smith A; Gorski W
    Anal Chem; 2004 Sep; 76(17):5045-50. PubMed ID: 15373440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube-based electrochemical biosensing platforms: fundamentals, applications, and future possibilities.
    Luong JH; Male KB; Hrapovic S
    Recent Pat Biotechnol; 2007; 1(2):181-91. PubMed ID: 19075840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-activated multi-walled carbon nanotube-polystyrene composite substrates for biosensing.
    Fernández-Sánchez C; Pellicer E; Orozco J; Jiménez-Jorquera C; Lechuga LM; Mendoza E
    Nanotechnology; 2009 Aug; 20(33):335501. PubMed ID: 19636101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor.
    Pérez López B; Merkoçi A
    Analyst; 2009 Jan; 134(1):60-4. PubMed ID: 19082175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.