These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26818461)

  • 1. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors.
    Lou BS; Veerakumar P; Chen SM; Veeramani V; Madhu R; Liu SB
    Sci Rep; 2016 Jan; 6():19949. PubMed ID: 26818461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from Moringa oleifera Branches for High-Performance Supercapacitors.
    Cai Y; Luo Y; Xiao Y; Zhao X; Liang Y; Hu H; Dong H; Sun L; Liu Y; Zheng M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33060-33071. PubMed ID: 27805357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-cost supercapacitor based on multi-walled carbon nanotubes and activated carbon derived from
    Palisoc S; Dungo JM; Natividad M
    Heliyon; 2020 Jan; 6(1):e03202. PubMed ID: 32021923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Sensitive Detection of Arsenite Based on Its Affinity toward Ruthenium Nanoparticles Decorated on Glassy Carbon Electrode.
    Gupta R; Gamare JS; Pandey AK; Tyagi D; Kamat JV
    Anal Chem; 2016 Feb; 88(4):2459-65. PubMed ID: 26776089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraordinary Porous Few-Layer Carbons of High Capacitance from Pechini Combustion of Magnesium Nitrate Gel.
    Qian M; Wang Y; Xu F; Zhao W; Lin T; Huang F
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):381-388. PubMed ID: 29218981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.
    Hou J; Jiang K; Wei R; Tahir M; Wu X; Shen M; Wang X; Cao C
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30626-30634. PubMed ID: 28819968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchically Porous Carbons Derived from Metal-Organic Framework/Chitosan Composites for High-Performance Supercapacitors.
    Zhong S; Kitta M; Xu Q
    Chem Asian J; 2019 Oct; 14(20):3583-3589. PubMed ID: 30964963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-Friendly and High Performance Supercapacitors for Elevated Temperature Applications Using Recycled Tea Leaves.
    Bhoyate S; Ranaweera CK; Zhang C; Morey T; Hyatt M; Kahol PK; Ghimire M; Mishra SR; Gupta RK
    Glob Chall; 2017 Nov; 1(8):1700063. PubMed ID: 31565294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.
    Hao P; Zhao Z; Tian J; Li H; Sang Y; Yu G; Cai H; Liu H; Wong CP; Umar A
    Nanoscale; 2014 Oct; 6(20):12120-9. PubMed ID: 25201446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coffee-derived activated carbon from second biowaste for supercapacitor applications.
    Adan-Mas A; Alcaraz L; Arévalo-Cid P; López-Gómez FA; Montemor F
    Waste Manag; 2021 Feb; 120():280-289. PubMed ID: 33316548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.
    Tan Y; Xu C; Chen G; Liu Z; Ma M; Xie Q; Zheng N; Yao S
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2241-8. PubMed ID: 23425031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.
    Yu C; Ma P; Zhou X; Wang A; Qian T; Wu S; Chen Q
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17937-43. PubMed ID: 25247315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Condiment-Derived 3D Architecture Porous Carbon for Electrochemical Supercapacitors.
    Qian W; Zhu J; Zhang Y; Wu X; Yan F
    Small; 2015 Oct; 11(37):4959-69. PubMed ID: 26150228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metal/functionalized cellulose nanofiber composites for catalytic applications.
    Gopiraman M; Bang H; Yuan G; Yin C; Song KH; Lee JS; Chung IM; Karvembu R; Kim IS
    Carbohydr Polym; 2015 Nov; 132():554-64. PubMed ID: 26256382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance.
    Jung SM; Mafra DL; Lin CT; Jung HY; Kong J
    Nanoscale; 2015 Mar; 7(10):4386-93. PubMed ID: 25682978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Electrochemical Properties of Physically and Chemically Activated Carbon Nanoparticles for Supercapacitors.
    Alhebshi NA; Salah N; Hussain H; Salah YN; Yin J
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.
    Wan L; Wang J; Xie L; Sun Y; Li K
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15583-96. PubMed ID: 25137068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Nanoporous Structure of Carbons Derived from the Composite of Cross-Linked Polymers for Charge Storage Applications.
    Barzegar F; Pavlenko V; Zahid M; Bello A; Xia X; Manyala N; Ozoemena KI; Abbas Q
    ACS Appl Energy Mater; 2021 Feb; 4(2):1763-1773. PubMed ID: 33644701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.