BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26819051)

  • 1. Structural modeling of JAK1 mutations in T-cell acute lymphoblastic leukemia reveals a second contact site between pseudokinase and kinase domains.
    Canté-Barrett K; Uitdehaag JC; Meijerink JP
    Haematologica; 2016 May; 101(5):e189-91. PubMed ID: 26819051
    [No Abstract]   [Full Text] [Related]  

  • 2. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia.
    Wang Q; Qiu H; Jiang H; Wu L; Dong S; Pan J; Wang W; Ping N; Xia J; Sun A; Wu D; Xue Y; Drexler HG; Macleod RA; Chen S
    Haematologica; 2011 Dec; 96(12):1808-14. PubMed ID: 21880637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JAK1 mutations are not frequent events in adult T-ALL: a GRAALL study.
    Asnafi V; Le Noir S; Lhermitte L; Gardin C; Legrand F; Vallantin X; Malfuson JV; Ifrah N; Dombret H; Macintyre E
    Br J Haematol; 2010 Jan; 148(1):178-9. PubMed ID: 19764985
    [No Abstract]   [Full Text] [Related]  

  • 4. JAK1 mutation analysis in T-cell acute lymphoblastic leukemia cell lines.
    Porcu M; Gielen O; Cools J; De Keersmaecker K
    Haematologica; 2009 Mar; 94(3):435-7. PubMed ID: 19176360
    [No Abstract]   [Full Text] [Related]  

  • 5. Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma.
    Kameda T; Shide K; Shimoda HK; Hidaka T; Kubuki Y; Katayose K; Taniguchi Y; Sekine M; Kamiunntenn A; Maeda K; Nagata K; Matsunaga T; Shimoda K
    Int J Hematol; 2010 Sep; 92(2):320-5. PubMed ID: 20697856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia.
    Kleppe M; Soulier J; Asnafi V; Mentens N; Hornakova T; Knoops L; Constantinescu S; Sigaux F; Meijerink JP; Vandenberghe P; Tartaglia M; Foa R; Macintyre E; Haferlach T; Cools J
    Blood; 2011 Jun; 117(26):7090-8. PubMed ID: 21551237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JAK mutations in high-risk childhood acute lymphoblastic leukemia.
    Mullighan CG; Zhang J; Harvey RC; Collins-Underwood JR; Schulman BA; Phillips LA; Tasian SK; Loh ML; Su X; Liu W; Devidas M; Atlas SR; Chen IM; Clifford RJ; Gerhard DS; Carroll WL; Reaman GH; Smith M; Downing JR; Hunger SP; Willman CL
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9414-8. PubMed ID: 19470474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia.
    Flex E; Petrangeli V; Stella L; Chiaretti S; Hornakova T; Knoops L; Ariola C; Fodale V; Clappier E; Paoloni F; Martinelli S; Fragale A; Sanchez M; Tavolaro S; Messina M; Cazzaniga G; Camera A; Pizzolo G; Tornesello A; Vignetti M; Battistini A; Cavé H; Gelb BD; Renauld JC; Biondi A; Constantinescu SN; Foà R; Tartaglia M
    J Exp Med; 2008 Apr; 205(4):751-8. PubMed ID: 18362173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations.
    Spinella JF; Cassart P; Richer C; Saillour V; Ouimet M; Langlois S; St-Onge P; Sontag T; Healy J; Minden MD; Sinnett D
    Oncotarget; 2016 Oct; 7(40):65485-65503. PubMed ID: 27602765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia.
    Li Q; Li B; Hu L; Ning H; Jiang M; Wang D; Liu T; Zhang B; Chen H
    Oncotarget; 2017 May; 8(21):34687-34697. PubMed ID: 28410228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition.
    Lupardus PJ; Ultsch M; Wallweber H; Bir Kohli P; Johnson AR; Eigenbrot C
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8025-30. PubMed ID: 24843152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. JAK kinase inhibitors for the treatment of acute lymphoblastic leukemia.
    Degryse S; Cools J
    J Hematol Oncol; 2015 Jul; 8():91. PubMed ID: 26208852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling.
    Grant AH; Rodriguez AC; Rodriguez Moncivais OJ; Sun S; Li L; Mohl JE; Leung MY; Kirken RA; Rodriguez G
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming JAK1 mutations exhibit differential signalling, FERM domain requirements and growth responses to interferon-γ.
    Gordon GM; Lambert QT; Daniel KG; Reuther GW
    Biochem J; 2010 Dec; 432(2):255-65. PubMed ID: 20868368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors.
    Hornakova T; Springuel L; Devreux J; Dusa A; Constantinescu SN; Knoops L; Renauld JC
    Haematologica; 2011 Jun; 96(6):845-53. PubMed ID: 21393331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers.
    Jeong EG; Kim MS; Nam HK; Min CK; Lee S; Chung YJ; Yoo NJ; Lee SH
    Clin Cancer Res; 2008 Jun; 14(12):3716-21. PubMed ID: 18559588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers.
    Hornakova T; Staerk J; Royer Y; Flex E; Tartaglia M; Constantinescu SN; Knoops L; Renauld JC
    J Biol Chem; 2009 Mar; 284(11):6773-81. PubMed ID: 19139102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon.
    Hornakova T; Chiaretti S; Lemaire MM; Foà R; Ben Abdelali R; Asnafi V; Tartaglia M; Renauld JC; Knoops L
    Blood; 2010 Apr; 115(16):3287-95. PubMed ID: 20167706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities.
    Losdyck E; Hornakova T; Springuel L; Degryse S; Gielen O; Cools J; Constantinescu SN; Flex E; Tartaglia M; Renauld JC; Knoops L
    J Biol Chem; 2015 Nov; 290(48):29022-34. PubMed ID: 26446793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia.
    Zenatti PP; Ribeiro D; Li W; Zuurbier L; Silva MC; Paganin M; Tritapoe J; Hixon JA; Silveira AB; Cardoso BA; Sarmento LM; Correia N; Toribio ML; Kobarg J; Horstmann M; Pieters R; Brandalise SR; Ferrando AA; Meijerink JP; Durum SK; Yunes JA; Barata JT
    Nat Genet; 2011 Sep; 43(10):932-9. PubMed ID: 21892159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.