These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26819586)

  • 1. Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations.
    Krasnopolsky V; Nadiga S; Mehra A; Bayler E; Behringer D
    Comput Intell Neurosci; 2016; 2016():6156513. PubMed ID: 26819586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning.
    Kolluru S; Tiwari SP
    Sci Total Environ; 2022 Oct; 844():157191. PubMed ID: 35810889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI).
    Wang M; Ahn JH; Jiang L; Shi W; Son S; Park YJ; Ryu JH
    Opt Express; 2013 Feb; 21(3):3835-49. PubMed ID: 23481840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing.
    Wang M; Shi W; Jiang L; Liu X; Son S; Voss K
    Opt Express; 2015 Jun; 23(11):14446-60. PubMed ID: 26072806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiometric calibration of ocean color satellite sensors using AERONET-OC data.
    Hlaing S; Gilerson A; Foster R; Wang M; Arnone R; Ahmed S
    Opt Express; 2014 Sep; 22(19):23385-401. PubMed ID: 25321808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural network approach to retrieve the inherent optical properties of the ocean from observations of MODIS.
    Ioannou I; Gilerson A; Gross B; Moshary F; Ahmed S
    Appl Opt; 2011 Jul; 50(19):3168-86. PubMed ID: 21743516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sources and assumptions for the vicarious calibration of ocean color satellite observations.
    Bailey SW; Hooker SB; Antoine D; Franz BA; Werdell PJ
    Appl Opt; 2008 Apr; 47(12):2035-45. PubMed ID: 18425176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deriving consistent ocean biological and biogeochemical products from multiple satellite ocean color sensors.
    Wang M; Jiang L; Son S; Liu X; Voss KJ
    Opt Express; 2020 Feb; 28(3):2661-2682. PubMed ID: 32121950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destriping algorithm for improved satellite-derived ocean color product imagery.
    Mikelsons K; Wang M; Jiang L; Bouali M
    Opt Express; 2014 Nov; 22(23):28058-70. PubMed ID: 25402046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential for nocturnal satellite detection of suspended matter concentrations in coastal waters using a panchromatic band: a feasibility study based on VIIRS (NASA/NOAA) spectral and radiometric specifications.
    Chami M; Larnicol M; Migeon S; Minghelli A; Mathieu S
    Opt Express; 2020 May; 28(10):15314-15330. PubMed ID: 32403562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributions of phytoplankton carbohydrate, protein and lipid in the world oceans from satellite ocean colour.
    Roy S
    ISME J; 2018 Jun; 12(6):1457-1472. PubMed ID: 29434313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.
    Wang M; Shi W; Jiang L; Voss K
    Opt Express; 2016 Sep; 24(18):20437-53. PubMed ID: 27607649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing uncertainties in neural network Jacobians and improving accuracy of neural network emulations with NN ensemble approaches.
    Krasnopolsky VM
    Neural Netw; 2007 May; 20(4):454-61. PubMed ID: 17521879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.
    Jiang L; Wang M
    Appl Opt; 2013 Sep; 52(27):6757-70. PubMed ID: 24085175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic inversion of ocean color data using the cross-entropy method.
    Salama MS; Shen F
    Opt Express; 2010 Jan; 18(2):479-99. PubMed ID: 20173868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.
    Zeng C; Xu H; Fischer AM
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing.
    Jiang L; Wang M
    Opt Express; 2014 Sep; 22(18):21657-78. PubMed ID: 25321543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing.
    Bailey SW; Franz BA; Werdell PJ
    Opt Express; 2010 Mar; 18(7):7521-7. PubMed ID: 20389774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.
    He X; Bai Y; Pan D; Tang J; Wang D
    Opt Express; 2012 Aug; 20(18):20754-70. PubMed ID: 23037125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.