BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26819774)

  • 21. Deep brain stimulation of the nucleus accumbens for the treatment of addiction.
    Müller UJ; Voges J; Steiner J; Galazky I; Heinze HJ; Möller M; Pisapia J; Halpern C; Caplan A; Bogerts B; Kuhn J
    Ann N Y Acad Sci; 2013 Apr; 1282():119-28. PubMed ID: 23227826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning.
    Kelley AE
    Neurosci Biobehav Rev; 2004 Jan; 27(8):765-76. PubMed ID: 15019426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleus accumbens stimulation in pathological obesity.
    Harat M; Rudaś M; Zieliński P; Birska J; Sokal P
    Neurol Neurochir Pol; 2016; 50(3):207-10. PubMed ID: 27154450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping of microstimulation evoked responses and unit activity patterns in the lateral hypothalamic area recorded in awake humans. Technical note.
    Wilent WB; Oh MY; Buetefisch C; Bailes JE; Cantella D; Angle C; Whiting DM
    J Neurosurg; 2011 Aug; 115(2):295-300. PubMed ID: 21495826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypothalamic deep brain stimulation influences autonomic and limbic circuitry involved in the regulation of aggression and cardiocerebrovascular control in the Göttingen minipig.
    Ettrup KS; Sørensen JC; Rodell A; Alstrup AK; Bjarkam CR
    Stereotact Funct Neurosurg; 2012; 90(5):281-91. PubMed ID: 22797692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission.
    Zhang C; Wei NL; Wang Y; Wang X; Zhang JG; Zhang K
    Neurosci Lett; 2015 Mar; 589():1-6. PubMed ID: 25578952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats.
    Henderson MB; Green AI; Bradford PS; Chau DT; Roberts DW; Leiter JC
    Neurosurg Focus; 2010 Aug; 29(2):E12. PubMed ID: 20672914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of corticostriatal-hypothalamic neural circuits in feeding behaviour: implications for obesity.
    Clarke RE; Verdejo-Garcia A; Andrews ZB
    J Neurochem; 2018 Dec; 147(6):715-729. PubMed ID: 29704424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of orexin-A in food motivation, reward-based feeding behavior and food-induced neuronal activation in rats.
    Choi DL; Davis JF; Fitzgerald ME; Benoit SC
    Neuroscience; 2010 Apr; 167(1):11-20. PubMed ID: 20149847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rationale for hypothalamus-deep brain stimulation in food intake disorders and obesity.
    Torres N; Chabardès S; Benabid AL
    Adv Tech Stand Neurosurg; 2011; 36():17-30. PubMed ID: 21197606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurobiology of overeating and obesity: the role of melanocortins and beyond.
    Pandit R; de Jong JW; Vanderschuren LJ; Adan RA
    Eur J Pharmacol; 2011 Jun; 660(1):28-42. PubMed ID: 21295024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopamine release in the lateral hypothalamus is stimulated by α-MSH in both the anticipatory and consummatory phases of feeding.
    Legrand R; Lucas N; Breton J; Déchelotte P; Fetissov SO
    Psychoneuroendocrinology; 2015 Jun; 56():79-87. PubMed ID: 25805178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Body fat and body weight reduction following hypothalamic deep brain stimulation in monkeys: an intraventricular approach.
    Torres N; Chabardes S; Piallat B; Devergnas A; Benabid AL
    Int J Obes (Lond); 2012 Dec; 36(12):1537-44. PubMed ID: 22349575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep brain stimulation for psychiatric disorders: where we are now.
    Cleary DR; Ozpinar A; Raslan AM; Ko AL
    Neurosurg Focus; 2015 Jun; 38(6):E2. PubMed ID: 26030702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the septal area in feeding behavior elicited by electrical stimulation of the lateral hypothalamus of the rat.
    Oliveira LA; Gentil CG; Covian MR
    Braz J Med Biol Res; 1990; 23(1):49-58. PubMed ID: 2386849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems.
    Liu CM; Kanoski SE
    Physiol Behav; 2018 Sep; 193(Pt B):223-231. PubMed ID: 29421588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake.
    Stanley BG; Urstadt KR; Charles JR; Kee T
    Physiol Behav; 2011 Jul; 104(1):40-6. PubMed ID: 21550353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ghrelin at the interface of obesity and reward.
    Schellekens H; Dinan TG; Cryan JF
    Vitam Horm; 2013; 91():285-323. PubMed ID: 23374722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Central mechanisms of roles of taste in reward and eating.
    Yamamoto T
    Acta Physiol Hung; 2008 Jun; 95(2):165-86. PubMed ID: 18642757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural Circuit Mechanisms Underlying Emotional Regulation of Homeostatic Feeding.
    Sweeney P; Yang Y
    Trends Endocrinol Metab; 2017 Jun; 28(6):437-448. PubMed ID: 28279562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.