These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26819816)

  • 1. Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells.
    Aekbote BL; Fekete T; Jacak J; Vizsnyiczai G; Ormos P; Kelemen L
    Biomed Opt Express; 2016 Jan; 7(1):45-56. PubMed ID: 26819816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically Actuated Soft Microrobot Family for Single-Cell Manipulation.
    Iványi GT; Nemes B; Gróf I; Fekete T; Kubacková J; Tomori Z; Bánó G; Vizsnyiczai G; Kelemen L
    Adv Mater; 2024 Aug; 36(32):e2401115. PubMed ID: 38814436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Chiral 3D Microstructure Using Tightly Focused Multiramp Helico-Conical Optical Beams.
    Wen J; Sun Q; Luo M; Ma C; Yang Z; Su C; Cao C; Zhu D; Ding C; Xu L; Kuang C; Liu X
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond Mathieu Beams for Rapid Controllable Fabrication of Complex Microcages and Application in Trapping Microobjects.
    Wang C; Yang L; Hu Y; Rao S; Wang Y; Pan D; Ji S; Zhang C; Su Y; Zhu W; Li J; Wu D; Chu J
    ACS Nano; 2019 Apr; 13(4):4667-4676. PubMed ID: 30865422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope.
    Visscher K; Brakenhoff GJ; Krol JJ
    Cytometry; 1993; 14(2):105-14. PubMed ID: 8440145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution dual-trap optical tweezers with differential detection: instrument design.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip73. PubMed ID: 20147038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graded-index optical fiber tweezers with long manipulation length.
    Gong Y; Huang W; Liu QF; Wu Y; Rao Y; Peng GD; Lang J; Zhang K
    Opt Express; 2014 Oct; 22(21):25267-76. PubMed ID: 25401560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator.
    Gittard SD; Nguyen A; Obata K; Koroleva A; Narayan RJ; Chichkov BN
    Biomed Opt Express; 2011 Nov; 2(11):3167-78. PubMed ID: 22076276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.
    Wang C; Chowdhury S; Gupta SK; Losert W
    J Biomed Opt; 2013 Apr; 18(4):045001. PubMed ID: 23545852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser tweezers are sources of two-photon excitation.
    König K
    Cell Mol Biol (Noisy-le-grand); 1998 Jul; 44(5):721-33. PubMed ID: 9764743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules.
    Greulich KO; Pilarczyk G; Hoffmann A; Meyer Zu Hörste G; Schäfer B; Uhl V; Monajembashi S
    J Microsc; 2000 Jun; 198(Pt 3):182-7. PubMed ID: 10849196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical micromanipulation using supercontinuum Laguerre-Gaussian and Gaussian beams.
    Morris JE; Carruthers AE; Mazilu M; Reece PJ; Cizmar T; Fischer P; Dholakia K
    Opt Express; 2008 Jul; 16(14):10117-29. PubMed ID: 18607419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization.
    Engelhardt S; Hoch E; Borchers K; Meyer W; Krüger H; Tovar GE; Gillner A
    Biofabrication; 2011 Jun; 3(2):025003. PubMed ID: 21562366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiview microscopy of single cells through microstructure-based indirect optical manipulation.
    Vizsnyiczai G; Búzás A; Lakshmanrao Aekbote B; Fekete T; Grexa I; Ormos P; Kelemen L
    Biomed Opt Express; 2020 Feb; 11(2):945-962. PubMed ID: 32133231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material.
    Ni J; Wang C; Zhang C; Hu Y; Yang L; Lao Z; Xu B; Li J; Wu D; Chu J
    Light Sci Appl; 2017 Jul; 6(7):e17011. PubMed ID: 30167269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications.
    Maibohm C; Silvestre OF; Borme J; Sinou M; Heggarty K; Nieder JB
    Sci Rep; 2020 May; 10(1):8740. PubMed ID: 32457310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-Dumbbells-A Versatile Tool for Optical Tweezers.
    Lamperska W; Drobczyński S; Nawrot M; Wasylczyk P; Masajada J
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and kinetics of asphalt binder microstructure at gas, liquid and solid interfaces.
    Ramm A; Downer MC; Sakib N; Bhasin A
    J Microsc; 2019 Dec; 276(3):109-117. PubMed ID: 31696508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical trapping and manipulation of live T cells with a low numerical aperture lens.
    Harris J; McConnell G
    Opt Express; 2008 Sep; 16(18):14036-43. PubMed ID: 18773014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa.
    König K; Tadir Y; Patrizio P; Berns MW; Tromberg BJ
    Hum Reprod; 1996 Oct; 11(10):2162-4. PubMed ID: 8943522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.