These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26819821)

  • 1. Alteration in refractive index profile during accommodation based on mechanical modelling.
    Bahrami M; Heidari A; Pierscionek BK
    Biomed Opt Express; 2016 Jan; 7(1):99-110. PubMed ID: 26819821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses.
    de Castro A; Birkenfeld J; Maceo B; Manns F; Arrieta E; Parel JM; Marcos S
    Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6197-207. PubMed ID: 23927893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.
    Birkenfeld J; de Castro A; Ortiz S; Pascual D; Marcos S
    Vision Res; 2013 Jun; 86():27-34. PubMed ID: 23597582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refractive index redistribution with accommodation based on finite volume-constant age-dependent mechanical modeling.
    Jiang MS; Xu XL; Yang T; Zhang XD; Li F
    Vision Res; 2019 Jul; 160():52-59. PubMed ID: 31095964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens.
    Sheil CJ; Goncharov AV
    Biomed Opt Express; 2016 May; 7(5):1985-99. PubMed ID: 27231637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2599-607. PubMed ID: 24677101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystalline lens paradoxes revisited: significance of age-related restructuring of the GRIN.
    Sheil CJ; Goncharov AV
    Biomed Opt Express; 2017 Sep; 8(9):4172-4180. PubMed ID: 28966856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.
    Maceo Heilman B; Manns F; de Castro A; Durkee H; Arrieta E; Marcos S; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1743-50. PubMed ID: 25670492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens.
    Navarro R; Palos F; González LM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2911-20. PubMed ID: 17767263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5067-73. PubMed ID: 26241395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation.
    Khan A; Pope JM; Verkicharla PK; Suheimat M; Atchison DA
    Biomed Opt Express; 2018 Mar; 9(3):1272-1282. PubMed ID: 29541520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry-invariant GRIN lens: iso-dispersive contours.
    Bahrami M; Goncharov AV
    Biomed Opt Express; 2012 Jul; 3(7):1684-700. PubMed ID: 22808438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analytical method for predicting the geometrical and optical properties of the human lens under accommodation.
    Sheil CJ; Bahrami M; Goncharov AV
    Biomed Opt Express; 2014 May; 5(5):1649-63. PubMed ID: 24877022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry-invariant gradient refractive index lens: analytical ray tracing.
    Bahrami M; Goncharov AV
    J Biomed Opt; 2012 May; 17(5):055001. PubMed ID: 22612122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Lens Shape, Zonular Insertion and Finite Element Model on Simulated Shape Change of the Eye Lens.
    Ye L; Wang K; Grasa J; Pierscionek BK
    Ann Biomed Eng; 2024 Aug; 52(8):1982-1990. PubMed ID: 38503945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Modeling Approach for Investigating Opto-Mechanical Relationships in the Human Eye Lens.
    Wang K; Venetsanos DT; Hoshino M; Uesugi K; Yagi N; Pierscionek BK
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):999-1006. PubMed ID: 31395531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gradient index lens of the eye: an opto-biological synchrony.
    Pierscionek BK; Regini JW
    Prog Retin Eye Res; 2012 Jul; 31(4):332-49. PubMed ID: 22465790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging.
    de Castro A; Ortiz S; Gambra E; Siedlecki D; Marcos S
    Opt Express; 2010 Oct; 18(21):21905-17. PubMed ID: 20941090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in equivalent and gradient refractive index of the crystalline lens with accommodation.
    Garner LF; Smith G
    Optom Vis Sci; 1997 Feb; 74(2):114-9. PubMed ID: 9097329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.