These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Jiang W; Li L; Zhang D; Huang S; Jing Z; Wu Y; Zhao Z; Zhao L; Zhou S Acta Biomater; 2015 Oct; 25():240-52. PubMed ID: 26188325 [TBL] [Abstract][Full Text] [Related]
4. Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration. Shim JH; Won JY; Park JH; Bae JH; Ahn G; Kim CH; Lim DH; Cho DW; Yun WS; Bae EB; Jeong CM; Huh JB Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441338 [TBL] [Abstract][Full Text] [Related]
5. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
6. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects. Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282 [TBL] [Abstract][Full Text] [Related]
7. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846 [TBL] [Abstract][Full Text] [Related]
8. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration. Averianov I; Stepanova M; Solomakha O; Gofman I; Serdobintsev M; Blum N; Kaftuirev A; Baulin I; Nashchekina J; Lavrentieva A; Vinogradova T; Korzhikov-Vlakh V; Korzhikova-Vlakh E J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2422-2437. PubMed ID: 35618683 [TBL] [Abstract][Full Text] [Related]
9. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Pati F; Song TH; Rijal G; Jang J; Kim SW; Cho DW Biomaterials; 2015 Jan; 37():230-41. PubMed ID: 25453953 [TBL] [Abstract][Full Text] [Related]
10. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Samavedi S; Vaidya P; Gaddam P; Whittington AR; Goldstein AS Biotechnol Bioeng; 2014 Dec; 111(12):2549-59. PubMed ID: 24898875 [TBL] [Abstract][Full Text] [Related]
11. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095 [TBL] [Abstract][Full Text] [Related]
12. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. Roosa SM; Kemppainen JM; Moffitt EN; Krebsbach PH; Hollister SJ J Biomed Mater Res A; 2010 Jan; 92(1):359-68. PubMed ID: 19189391 [TBL] [Abstract][Full Text] [Related]
13. Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. Jensen J; Rölfing JH; Le DQ; Kristiansen AA; Nygaard JV; Hokland LB; Bendtsen M; Kassem M; Lysdahl H; Bünger CE J Biomed Mater Res A; 2014 Sep; 102(9):2993-3003. PubMed ID: 24123983 [TBL] [Abstract][Full Text] [Related]
14. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds. He J; Xia P; Li D Biofabrication; 2016 Aug; 8(3):035008. PubMed ID: 27490377 [TBL] [Abstract][Full Text] [Related]
15. A simvastatin-releasing scaffold with periodontal ligament stem cell sheets for periodontal regeneration. Zhao B; Chen J; Zhao L; Deng J; Li Q J Appl Biomater Funct Mater; 2020; 18():2280800019900094. PubMed ID: 32931350 [TBL] [Abstract][Full Text] [Related]
16. Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes. He J; Xu F; Dong R; Guo B; Li D Biofabrication; 2017 Jan; 9(1):015007. PubMed ID: 28052044 [TBL] [Abstract][Full Text] [Related]
17. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Lee CH; Hajibandeh J; Suzuki T; Fan A; Shang P; Mao JJ Tissue Eng Part A; 2014 Apr; 20(7-8):1342-51. PubMed ID: 24295512 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects. Qi X; Huang Y; Han D; Zhang J; Cao J; Jin X; Huang J; Li X; Wang T Biomed Mater; 2016 Mar; 11(2):025005. PubMed ID: 26964015 [TBL] [Abstract][Full Text] [Related]
20. Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. Freeman FE; Browe DC; Nulty J; Von Euw S; Grayson WL; Kelly DJ Eur Cell Mater; 2019 Oct; 38():168-187. PubMed ID: 31602629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]