These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 26820485)
1. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity. Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485 [TBL] [Abstract][Full Text] [Related]
2. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system. Di Lello P; Benison GC; Valafar H; Pitts KE; Summers AO; Legault P; Omichinski JG Biochemistry; 2004 Jul; 43(26):8322-32. PubMed ID: 15222745 [TBL] [Abstract][Full Text] [Related]
3. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation. Lafrance-Vanasse J; Lefebvre M; Di Lello P; Sygusch J; Omichinski JG J Biol Chem; 2009 Jan; 284(2):938-44. PubMed ID: 19004822 [TBL] [Abstract][Full Text] [Related]
4. Structural and Biochemical Characterization of Organotin and Organolead Compounds Binding to the Organomercurial Lyase MerB Provide New Insights into Its Mechanism of Carbon-Metal Bond Cleavage. Wahba HM; Stevenson MJ; Mansour A; Sygusch J; Wilcox DE; Omichinski JG J Am Chem Soc; 2017 Jan; 139(2):910-921. PubMed ID: 27989130 [TBL] [Abstract][Full Text] [Related]
5. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA. Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of Hg-C protonolysis in the organomercurial lyase MerB. Parks JM; Guo H; Momany C; Liang L; Miller SM; Summers AO; Smith JC J Am Chem Soc; 2009 Sep; 131(37):13278-85. PubMed ID: 19719173 [TBL] [Abstract][Full Text] [Related]
7. The roles of thiols in the bacterial organomercurial lyase (MerB). Pitts KE; Summers AO Biochemistry; 2002 Aug; 41(32):10287-96. PubMed ID: 12162744 [TBL] [Abstract][Full Text] [Related]
8. Organomercurials removal by heterogeneous merB genes harboring bacterial strains. Chien MF; Narita M; Lin KH; Matsui K; Huang CC; Endo G J Biosci Bioeng; 2010 Jul; 110(1):94-8. PubMed ID: 20541123 [TBL] [Abstract][Full Text] [Related]
9. Structural studies of AntD: an N-Acyltransferase involved in the biosynthesis of D-Anthrose. Kubiak RL; Holden HM Biochemistry; 2012 Jan; 51(4):867-78. PubMed ID: 22220494 [TBL] [Abstract][Full Text] [Related]
10. Cleaving mercury-alkyl bonds: a functional model for mercury detoxification by MerB. Melnick JG; Parkin G Science; 2007 Jul; 317(5835):225-7. PubMed ID: 17626880 [TBL] [Abstract][Full Text] [Related]
11. Structural studies of Apo NosL, an accessory protein of the nitrous oxide reductase system: insights from structural homology with MerB, a mercury resistance protein. Taubner LM; McGuirl MA; Dooley DM; Copié V Biochemistry; 2006 Oct; 45(40):12240-52. PubMed ID: 17014077 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning and genetic analysis of functional merB gene from indian isolates of Escherichia coli. Murtaza I; Dutt A; Mushtaq D; Ali A Curr Microbiol; 2005 Nov; 51(5):297-302. PubMed ID: 16211434 [TBL] [Abstract][Full Text] [Related]
14. Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold. Kaur G; Subramanian S J Struct Biol; 2014 Oct; 188(1):16-21. PubMed ID: 25220669 [TBL] [Abstract][Full Text] [Related]
15. Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium strain MB1. Huang CC; Narita M; Yamagata T; Endo G Gene; 1999 Nov; 239(2):361-6. PubMed ID: 10548738 [TBL] [Abstract][Full Text] [Related]
16. Kinetic characterization of the Escherichia coli oligopeptidase A (OpdA) and the role of the Tyr(607) residue. Lorenzon RZ; Cunha CE; Marcondes MF; Machado MF; Juliano MA; Oliveira V; Travassos LR; Paschoalin T; Carmona AK Arch Biochem Biophys; 2010 Aug; 500(2):131-6. PubMed ID: 20513640 [TBL] [Abstract][Full Text] [Related]
17. First structures of an active bacterial tyrosinase reveal copper plasticity. Sendovski M; Kanteev M; Ben-Yosef VS; Adir N; Fishman A J Mol Biol; 2011 Jan; 405(1):227-37. PubMed ID: 21040728 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the side-chain hydroxyl moieties of residues Y56, Y111, Y238, Y338, and S339 as determinants of specificity in E. coli cystathionine β-lyase. Lodha PH; Aitken SM Biochemistry; 2011 Nov; 50(45):9876-85. PubMed ID: 21958132 [TBL] [Abstract][Full Text] [Related]
19. Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA). Krout IN; Scrimale T; Vorojeikina D; Boyd ES; Rand MD Appl Environ Microbiol; 2022 Mar; 88(6):e0001022. PubMed ID: 35138926 [TBL] [Abstract][Full Text] [Related]
20. Redox-dependent stability of the γ-glutamylcysteine synthetase enzyme of Escherichia coli: a novel means of redox regulation. Kumar S; Kasturia N; Sharma A; Datt M; Bachhawat AK Biochem J; 2013 Feb; 449(3):783-94. PubMed ID: 23126248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]