These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 26820492)

  • 1. Control of the Redox Activity of Quantum Dots through Introduction of Fluoroalkanethiolates into Their Ligand Shells.
    Weinberg DJ; He C; Weiss EA
    J Am Chem Soc; 2016 Feb; 138(7):2319-26. PubMed ID: 26820492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Dependent Permeability of the Ligand Shell of PbS Quantum Dots Probed by Electron Transfer to Benzoquinone.
    Aruda KO; Bohlmann Kunz M; Tagliazucchi M; Weiss EA
    J Phys Chem Lett; 2015 Jul; 6(14):2841-6. PubMed ID: 26266870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition and Permeability of Oleate Adlayers of CdS Quantum Dots upon Dilution to Photoluminescence-Relevant Concentrations.
    Nepomnyashchii AB; Harris RD; Weiss EA
    Anal Chem; 2016 Mar; 88(6):3310-6. PubMed ID: 26901485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the Redox Activity of PbS Quantum Dots by Tuning Electrostatic Interactions at the Quantum Dot/Solvent Interface.
    He C; Weinberg DJ; Nepomnyashchii AB; Lian S; Weiss EA
    J Am Chem Soc; 2016 Jul; 138(28):8847-54. PubMed ID: 27341608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chemical environments of oleate species within samples of oleate-coated PbS quantum dots.
    Cass LC; Malicki M; Weiss EA
    Anal Chem; 2013 Jul; 85(14):6974-9. PubMed ID: 23786216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films.
    Zhao H; Fan Z; Liang H; Selopal GS; Gonfa BA; Jin L; Soudi A; Cui D; Enrichi F; Natile MM; Concina I; Ma D; Govorov AO; Rosei F; Vomiero A
    Nanoscale; 2014 Jun; 6(12):7004-11. PubMed ID: 24839954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-time scale photoinduced electron transfer from PbS quantum dots to a molecular acceptor.
    Knowles KE; Malicki M; Weiss EA
    J Am Chem Soc; 2012 Aug; 134(30):12470-3. PubMed ID: 22813233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Modulation of the Electrostatic Potential of a Colloidal Quantum Dot through the Protonation Equilibrium of Its Ligands.
    He C; Zhang Z; Wang C; Jiang Y; Weiss EA
    J Phys Chem Lett; 2017 Oct; 8(20):4981-4987. PubMed ID: 28949145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing Janus Ligand Shells on PbS Quantum Dots using Ligand-Ligand Cooperativity.
    Bronstein ND; Martinez MS; Kroupa DM; Vörös M; Lu H; Brawand NP; Nozik AJ; Sellinger A; Galli G; Beard MC
    ACS Nano; 2019 Apr; 13(4):3839-3846. PubMed ID: 30855942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots.
    Lai LH; Protesescu L; Kovalenko MV; Loi MA
    Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage.
    Kroupa DM; Arias DH; Blackburn JL; Carroll GM; Granger DB; Anthony JE; Beard MC; Johnson JC
    Nano Lett; 2018 Feb; 18(2):865-873. PubMed ID: 29364676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gating of hole transfer from photoexcited PbS quantum dots to aminoferrocene by the ligand shell of the dots.
    Malicki M; Knowles KE; Weiss EA
    Chem Commun (Camb); 2013 May; 49(39):4400-2. PubMed ID: 22684304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating photoinduced charge transfer in double- and single-emission PbS@CdS core@shell quantum dots.
    Zhao H; Liang H; Gonfa BA; Chaker M; Ozaki T; Tijssen P; Vidal F; Ma D
    Nanoscale; 2014 Jan; 6(1):215-25. PubMed ID: 24132400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous vapor sensor response of a fluorinated alkylthiol-protected gold nanoparticle film.
    Im J; Chandekar A; Whitten JE
    Langmuir; 2009 Apr; 25(8):4288-92. PubMed ID: 19366214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface thiolation of silicon for antifouling application.
    Zhang X; Gao P; Hollimon V; Brodus D; Johnson A; Hu H
    Chem Cent J; 2018 Feb; 12(1):10. PubMed ID: 29411153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer-by-Layer Quantum Dot Assemblies for the Enhanced Energy Transfers and Their Applications toward Efficient Solar Cells.
    Choi S; Jin H; Bang J; Kim S
    J Phys Chem Lett; 2012 Dec; 3(23):3442-7. PubMed ID: 26290970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-directed adsorption of block copolymers on alkanethiol-patterned gold surfaces.
    Chandekar A; Sengupta SK; Barry CM; Mead JL; Whitten JE
    Langmuir; 2006 Sep; 22(19):8071-7. PubMed ID: 16952243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum yield regeneration: influence of neutral ligand binding on photophysical properties in colloidal core/shell quantum dots.
    Shen Y; Tan R; Gee MY; Greytak AB
    ACS Nano; 2015 Mar; 9(3):3345-59. PubMed ID: 25753127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photostability of CdSe quantum dots functionalized with aromatic dithiocarbamate ligands.
    Tan Y; Jin S; Hamers RJ
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12975-83. PubMed ID: 24256318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.