These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26820910)

  • 1. Cu(2+) Binds to Phosphatidylethanolamine and Increases Oxidation in Lipid Membranes.
    Poyton MF; Sendecki AM; Cong X; Cremer PS
    J Am Chem Soc; 2016 Feb; 138(5):1584-90. PubMed ID: 26820910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unquenchable Surface Potential Dramatically Enhances Cu(2+) Binding to Phosphatidylserine Lipids.
    Cong X; Poyton MF; Baxter AJ; Pullanchery S; Cremer PS
    J Am Chem Soc; 2015 Jun; 137(24):7785-92. PubMed ID: 26065920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What Is the Preferred Conformation of Phosphatidylserine-Copper(II) Complexes? A Combined Theoretical and Experimental Investigation.
    Kusler K; Odoh SO; Silakov A; Poyton MF; Pullanchery S; Cremer PS; Gagliardi L
    J Phys Chem B; 2016 Dec; 120(50):12883-12889. PubMed ID: 27957849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence studies of dehydroergosterol in phosphatidylethanolamine/phosphatidylcholine bilayers.
    Cheng KH; Virtanen J; Somerharju P
    Biophys J; 1999 Dec; 77(6):3108-19. PubMed ID: 10585932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid headgroup superlattice modulates the activity of surface-acting cholesterol oxidase in ternary phospholipid/cholesterol bilayers.
    Cheng KH; Cannon B; Metze J; Lewis A; Huang J; Vaughn MW; Zhu Q; Somerharju P; Virtanen J
    Biochemistry; 2006 Sep; 45(36):10855-64. PubMed ID: 16953571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addition of Cleaved Tail Fragments during Lipid Oxidation Stabilizes Membrane Permeability Behavior.
    Runas KA; Acharya SJ; Schmidt JJ; Malmstadt N
    Langmuir; 2016 Jan; 32(3):779-86. PubMed ID: 26704691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation-dependent changes in the stability and permeability of lipid bilayers.
    Anzai K; Ogawa K; Goto Y; Senzaki Y; Ozawa T; Yamamoto H
    Antioxid Redox Signal; 1999; 1(3):339-47. PubMed ID: 11229445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of a non-lamellar lipid phase for the tight junction stability. Part I: Influence of basic amino acids, pH and protamine on the bilayer-hexagonal II phase behaviour of PS-containing PE membranes.
    Hein M; Post A; Galla HJ
    Chem Phys Lipids; 1992 Dec; 63(3):213-21. PubMed ID: 1493615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase properties of liquid-crystalline Phosphatidylcholine/Phosphatidylethanolamine bilayers revealed by fluorescent probes.
    Ahn T; Yun CH
    Arch Biochem Biophys; 1999 Sep; 369(2):288-94. PubMed ID: 10486148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of phosphatidylcholine and phosphatidylethanolamine on the photooxidation of canola oil.
    Lee J; Choe E
    J Food Sci; 2009 Aug; 74(6):C481-6. PubMed ID: 19723186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod outer segment disc membranes are capable of fusion.
    Boesze-Battaglia K; Yeagle PL
    Invest Ophthalmol Vis Sci; 1992 Mar; 33(3):484-93. PubMed ID: 1544775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers.
    Tsui FC; Ojcius DM; Hubbell WL
    Biophys J; 1986 Feb; 49(2):459-68. PubMed ID: 3955180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylinositol-4,5-bisphosphate ionization and domain formation in the presence of lipids with hydrogen bond donor capabilities.
    Graber ZT; Jiang Z; Gericke A; Kooijman EE
    Chem Phys Lipids; 2012 Sep; 165(6):696-704. PubMed ID: 22820347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes.
    Moncelli MR; Becucci L; Guidelli R
    Biophys J; 1994 Jun; 66(6):1969-80. PubMed ID: 8075331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and quantification of phosphatidylethanolamine-derived glucosylamines and aminoketoses from human erythrocytes--influence of glycation products on lipid peroxidation.
    Breitling-Utzmann CM; Unger A; Friedl DA; Lederer MO
    Arch Biochem Biophys; 2001 Jul; 391(2):245-54. PubMed ID: 11437356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.
    Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A
    Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolipid membranes through atomistic simulations: effect of glucose and galactose head groups on lipid bilayer properties.
    Róg T; Vattulainen I; Bunker A; Karttunen M
    J Phys Chem B; 2007 Aug; 111(34):10146-54. PubMed ID: 17676793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of Cu(I) in seawater at low oxygen concentrations.
    Pérez-Almeida N; González-Dávila M; Santana-Casiano JM; González AG; Suárez de Tangil M
    Environ Sci Technol; 2013 Feb; 47(3):1239-47. PubMed ID: 23259733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.