BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26820925)

  • 1. Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae.
    Xia A; Jacob A; Tabassum MR; Herrmann C; Murphy JD
    Bioresour Technol; 2016 Apr; 205():118-25. PubMed ID: 26820925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.
    Ding L; Cheng J; Xia A; Jacob A; Voelklein M; Murphy JD
    Bioresour Technol; 2016 Oct; 218():224-31. PubMed ID: 27371795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol.
    Xia A; Jacob A; Herrmann C; Tabassum MR; Murphy JD
    Bioresour Technol; 2015 Oct; 193():488-97. PubMed ID: 26163759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of biodiesel from carbon sources of macroalgae, Laminaria japonica.
    Xu X; Kim JY; Oh YR; Park JM
    Bioresour Technol; 2014 Oct; 169():455-461. PubMed ID: 25084043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated bioethanol and protein production from brown seaweed Laminaria digitata.
    Hou X; Hansen JH; Bjerre AB
    Bioresour Technol; 2015 Dec; 197():310-7. PubMed ID: 26342344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pretreatment of macroalgae for volatile fatty acid production.
    Pham TN; Um Y; Yoon HH
    Bioresour Technol; 2013 Oct; 146():754-757. PubMed ID: 23942360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates.
    Herrmann C; Kalita N; Wall D; Xia A; Murphy JD
    Bioresour Technol; 2016 Aug; 214():328-337. PubMed ID: 27152773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation system.
    Oh Y; Xu X; Kim JY; Park JM
    Biotechnol J; 2015 Aug; 10(8):1281-8. PubMed ID: 26098412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation.
    Greetham D; Adams JM; Du C
    Sci Rep; 2020 Jun; 10(1):9728. PubMed ID: 32546695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol production from marine algal hydrolysates using Escherichia coli KO11.
    Kim NJ; Li H; Jung K; Chang HN; Lee PC
    Bioresour Technol; 2011 Aug; 102(16):7466-9. PubMed ID: 21640583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions.
    Jung KW; Kim DH; Shin HS
    Bioresour Technol; 2011 Feb; 102(3):2745-50. PubMed ID: 21123054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production.
    Yin Y; Wang J
    Bioresour Technol; 2018 Nov; 268():52-59. PubMed ID: 30071413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass.
    Xia A; Cheng J; Lin R; Lu H; Zhou J; Cen K
    Bioresour Technol; 2013 Jun; 138():204-13. PubMed ID: 23612181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels.
    Adams JM; Toop TA; Donnison IS; Gallagher JA
    Bioresour Technol; 2011 Nov; 102(21):9976-84. PubMed ID: 21900006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.
    Lee OK; Oh YK; Lee EY
    Bioresour Technol; 2015 Nov; 196():22-7. PubMed ID: 26218538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of carbon composition of the fermented medium on the synthesis of volatile acids by the yeast Saccharomyces carlsbergensis 776].
    Gracheva IM; Zhirova VV; Babaeva SA; Kovalevich LS; Makeev DM
    Prikl Biokhim Mikrobiol; 1978; 14(4):583-5. PubMed ID: 31619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage.
    Miao H; Lu M; Zhao M; Huang Z; Ren H; Yan Q; Ruan W
    Bioresour Technol; 2013 Dec; 149():359-66. PubMed ID: 24128398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of pH in biologic production of hydrogen and volatile fatty acids from glucose by enriched anaerobic cultures.
    Zheng XJ; Yu HQ
    Appl Biochem Biotechnol; 2004 Feb; 112(2):79-90. PubMed ID: 14981283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation of Mannitol Extracts From Brown Macro Algae by Thermophilic
    Chades T; Scully SM; Ingvadottir EM; Orlygsson J
    Front Microbiol; 2018; 9():1931. PubMed ID: 30177924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon balance of major volatile fatty acids (VFAs) in recycling algal residue via a VFA-platform for reproduction of algal biomass.
    Kim D; Kim S; Han JI; Yang JW; Chang YK; Ryu BG
    J Environ Manage; 2019 May; 237():228-234. PubMed ID: 30798041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.