These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26821132)

  • 1. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins.
    Jamali AA; Ferdousi R; Razzaghi S; Li J; Safdari R; Ebrahimie E
    Drug Discov Today; 2016 May; 21(5):718-24. PubMed ID: 26821132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier.
    Lin J; Chen H; Li S; Liu Y; Li X; Yu B
    Artif Intell Med; 2019 Jul; 98():35-47. PubMed ID: 31521251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach.
    Kharangarh S; Sandhu H; Tangadpalliwar S; Garg P
    Comb Chem High Throughput Screen; 2018; 21(8):557-566. PubMed ID: 30360705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational identification of human long intergenic non-coding RNAs using a GA-SVM algorithm.
    Wang Y; Li Y; Wang Q; Lv Y; Wang S; Chen X; Yu X; Jiang W; Li X
    Gene; 2014 Jan; 533(1):94-9. PubMed ID: 24120395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of network link prediction in drug discovery.
    Abbas K; Abbasi A; Dong S; Niu L; Yu L; Chen B; Cai SM; Hasan Q
    BMC Bioinformatics; 2021 Apr; 22(1):187. PubMed ID: 33845763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational prediction of implantation outcome after embryo transfer.
    Raef B; Maleki M; Ferdousi R
    Health Informatics J; 2020 Sep; 26(3):1810-1826. PubMed ID: 31826687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.
    Bakhtiarizadeh MR; Moradi-Shahrbabak M; Ebrahimi M; Ebrahimie E
    J Theor Biol; 2014 Sep; 356():213-22. PubMed ID: 24819464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MLViS: A Web Tool for Machine Learning-Based Virtual Screening in Early-Phase of Drug Discovery and Development.
    Korkmaz S; Zararsiz G; Goksuluk D
    PLoS One; 2015; 10(4):e0124600. PubMed ID: 25928885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine.
    Manavalan B; Shin TH; Lee G
    Front Microbiol; 2018; 9():476. PubMed ID: 29616000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices.
    Tatjewski M; Kierczak M; Plewczynski D
    Methods Mol Biol; 2017; 1484():275-300. PubMed ID: 27787833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data.
    Huang HL; Chang FL
    Biosystems; 2007; 90(2):516-28. PubMed ID: 17280775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology.
    Araki T; Ikeda N; Shukla D; Jain PK; Londhe ND; Shrivastava VK; Banchhor SK; Saba L; Nicolaides A; Shafique S; Laird JR; Suri JS
    Comput Methods Programs Biomed; 2016 May; 128():137-58. PubMed ID: 27040838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Potential of Spherical Harmonics and PCVM for Compounds Activity Prediction.
    Wiercioch M
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31052500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning.
    Maheshwari S; Brylinski M
    J Mol Recognit; 2015 Jan; 28(1):35-48. PubMed ID: 26268369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.