These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 26821182)
1. RNASeq Based Transcriptional Profiling of Pseudomonas aeruginosa PA14 after Short- and Long-Term Anoxic Cultivation in Synthetic Cystic Fibrosis Sputum Medium. Tata M; Wolfinger MT; Amman F; Roschanski N; Dötsch A; Sonnleitner E; Häussler S; Bläsi U PLoS One; 2016; 11(1):e0147811. PubMed ID: 26821182 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome Analysis of Pseudomonas aeruginosa Biofilm Infection in an Harrington NE; Littler JL; Harrison F Appl Environ Microbiol; 2022 Feb; 88(3):e0178921. PubMed ID: 34878811 [TBL] [Abstract][Full Text] [Related]
3. Characterization of clonal strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Ontario, Canada. Beaudoin T; Aaron SD; Giesbrecht-Lewis T; Vandemheen K; Mah TF Can J Microbiol; 2010 Jul; 56(7):548-57. PubMed ID: 20651854 [TBL] [Abstract][Full Text] [Related]
4. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa. Pusic P; Tata M; Wolfinger MT; Sonnleitner E; Häussler S; Bläsi U Sci Rep; 2016 Dec; 6():39621. PubMed ID: 28000785 [TBL] [Abstract][Full Text] [Related]
6. Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Field TR; White A; Elborn JS; Tunney MM Eur J Clin Microbiol Infect Dis; 2005 Oct; 24(10):677-87. PubMed ID: 16249934 [TBL] [Abstract][Full Text] [Related]
7. Great phenotypic and genetic variation among successive chronic Pseudomonas aeruginosa from a cystic fibrosis patient. Lozano C; Azcona-Gutiérrez JM; Van Bambeke F; Sáenz Y PLoS One; 2018; 13(9):e0204167. PubMed ID: 30212579 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. Manos J; Arthur J; Rose B; Tingpej P; Fung C; Curtis M; Webb JS; Hu H; Kjelleberg S; Gorrell MD; Bye P; Harbour C J Med Microbiol; 2008 Dec; 57(Pt 12):1454-1465. PubMed ID: 19018014 [TBL] [Abstract][Full Text] [Related]
9. Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains. Varga JJ; Barbier M; Mulet X; Bielecki P; Bartell JA; Owings JP; Martinez-Ramos I; Hittle LE; Davis MR; Damron FH; Liechti GW; Puchałka J; dos Santos VA; Ernst RK; Papin JA; Albertí S; Oliver A; Goldberg JB BMC Genomics; 2015 Oct; 16():883. PubMed ID: 26519161 [TBL] [Abstract][Full Text] [Related]
11. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Alvarez-Ortega C; Harwood CS Mol Microbiol; 2007 Jul; 65(1):153-65. PubMed ID: 17581126 [TBL] [Abstract][Full Text] [Related]
12. Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. Hill D; Rose B; Pajkos A; Robinson M; Bye P; Bell S; Elkins M; Thompson B; Macleod C; Aaron SD; Harbour C J Clin Microbiol; 2005 Oct; 43(10):5085-90. PubMed ID: 16207967 [TBL] [Abstract][Full Text] [Related]
13. Fosfomycin and tobramycin in combination downregulate nitrate reductase genes narG and narH, resulting in increased activity against Pseudomonas aeruginosa under anaerobic conditions. McCaughey G; Gilpin DF; Schneiders T; Hoffman LR; McKevitt M; Elborn JS; Tunney MM Antimicrob Agents Chemother; 2013 Nov; 57(11):5406-14. PubMed ID: 23959314 [TBL] [Abstract][Full Text] [Related]
14. Multiple genotypic changes in hypersusceptible strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients do not always correlate with the phenotype. Wolter DJ; Black JA; Lister PD; Hanson ND J Antimicrob Chemother; 2009 Aug; 64(2):294-300. PubMed ID: 19468029 [TBL] [Abstract][Full Text] [Related]
15. Biofilm production using distinct media and antimicrobial susceptibility profile of Pseudomonas aeruginosa. Perez LR; Barth AL Braz J Infect Dis; 2011; 15(4):301-4. PubMed ID: 21860998 [TBL] [Abstract][Full Text] [Related]
16. Sputum Active Polymyxin Lipopeptides: Activity against Cystic Fibrosis Pseudomonas aeruginosa Isolates and Their Interactions with Sputum Biomolecules. Schneider-Futschik EK; Paulin OKA; Hoyer D; Roberts KD; Ziogas J; Baker MA; Karas J; Li J; Velkov T ACS Infect Dis; 2018 May; 4(5):646-655. PubMed ID: 29566483 [TBL] [Abstract][Full Text] [Related]
18. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. De Kievit TR; Parkins MD; Gillis RJ; Srikumar R; Ceri H; Poole K; Iglewski BH; Storey DG Antimicrob Agents Chemother; 2001 Jun; 45(6):1761-70. PubMed ID: 11353623 [TBL] [Abstract][Full Text] [Related]
19. Within-Host Evolution of the Dutch High-Prevalent Pseudomonas aeruginosa Clone ST406 during Chronic Colonization of a Patient with Cystic Fibrosis. van Mansfeld R; de Been M; Paganelli F; Yang L; Bonten M; Willems R PLoS One; 2016; 11(6):e0158106. PubMed ID: 27337151 [TBL] [Abstract][Full Text] [Related]