These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26821264)

  • 1. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.
    Kononova O; Snijder J; Kholodov Y; Marx KA; Wuite GJ; Roos WH; Barsegov V
    PLoS Comput Biol; 2016 Jan; 12(1):e1004729. PubMed ID: 26821264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuating nonlinear spring theory: Strength, deformability, and toughness of biological nanoparticles from theoretical reconstruction of force-deformation spectra.
    Maksudov F; Kononova O; Llauró A; Ortega-Esteban A; Douglas T; Condezo GN; Martín CS; Marx KA; Wuite GJL; Roos WH; de Pablo PJ; Barsegov V
    Acta Biomater; 2021 Mar; 122():263-277. PubMed ID: 33359294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical elasticity as a physical signature of conformational dynamics in a virus particle.
    Castellanos M; Pérez R; Carrasco C; Hernando-Pérez M; Gómez-Herrero J; de Pablo PJ; Mateu MG
    Proc Natl Acad Sci U S A; 2012 Jul; 109(30):12028-33. PubMed ID: 22797893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation.
    Marchetti M; Wuite G; Roos WH
    Curr Opin Virol; 2016 Jun; 18():82-8. PubMed ID: 27253691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional simulation of nanoindentation response of viral capsids. Shape and size effects.
    Ahadi A; Colomo J; Evilevitch A
    J Phys Chem B; 2009 Mar; 113(11):3370-8. PubMed ID: 19243104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of viral capsids.
    Zandi R; Reguera D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021917. PubMed ID: 16196614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material properties of viral nanocages explored by atomic force microscopy.
    van Rosmalen MG; Roos WH; Wuite GJ
    Methods Mol Biol; 2015; 1252():115-37. PubMed ID: 25358778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and dynamic asymmetry in icosahedrally symmetric virus capsids.
    Jana AK; May ER
    Curr Opin Virol; 2020 Dec; 45():8-16. PubMed ID: 32615360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the mechanism behind irreversible deformation of viral capsids.
    Arkhipov A; Roos WH; Wuite GJ; Schulten K
    Biophys J; 2009 Oct; 97(7):2061-9. PubMed ID: 19804738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for biologically relevant mechanical stiffening of a virus capsid by cavity-creating or spacefilling mutations.
    Guerra P; Valbuena A; Querol-Audí J; Silva C; Castellanos M; Rodríguez-Huete A; Garriga D; Mateu MG; Verdaguer N
    Sci Rep; 2017 Jun; 7(1):4101. PubMed ID: 28642465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pH Stability of Foot-and-Mouth Disease Virus Particles Is Modulated by Residues Located at the Pentameric Interface and in the N Terminus of VP1.
    Caridi F; Vázquez-Calvo A; Sobrino F; Martín-Acebes MA
    J Virol; 2015 May; 89(10):5633-42. PubMed ID: 25762735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of conformational transitions of viral shells.
    Guérin T; Bruinsma R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061911. PubMed ID: 18233873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis.
    Castellanos M; Carrillo PJ; Mateu MG
    Nanoscale; 2015 Mar; 7(13):5654-64. PubMed ID: 25744136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles.
    Maksudov F; Kliuchnikov E; Marx KA; Purohit PK; Barsegov V
    Acta Biomater; 2023 Aug; 166():326-345. PubMed ID: 37142109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of a predicted N-terminal amphipathic α-helix using atomistic molecular dynamics simulation of a complete prototype poliovirus virion.
    Roberts JA; Kuiper MJ; Thorley BR; Smooker PM; Hung A
    J Mol Graph Model; 2012 Sep; 38():165-73. PubMed ID: 23085162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural transitions and energy landscape for Cowpea Chlorotic Mottle Virus capsid mechanics from nanomanipulation in vitro and in silico.
    Kononova O; Snijder J; Brasch M; Cornelissen J; Dima RI; Marx KA; Wuite GJ; Roos WH; Barsegov V
    Biophys J; 2013 Oct; 105(8):1893-903. PubMed ID: 24138865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and flexibility of conical HIV-1 capsids determined within intact virions.
    Mattei S; Glass B; Hagen WJ; Kräusslich HG; Briggs JA
    Science; 2016 Dec; 354(6318):1434-1437. PubMed ID: 27980210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to perform a nanoindentation experiment on a virus.
    Roos WH
    Methods Mol Biol; 2011; 783():251-64. PubMed ID: 21909893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise reversible nanomechanical buckling in a viral capsid.
    Vörös Z; Csík G; Herényi L; Kellermayer MS
    Nanoscale; 2017 Jan; 9(3):1136-1143. PubMed ID: 28009879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear finite-element analysis of nanoindentation of viral capsids.
    Gibbons MM; Klug WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031901. PubMed ID: 17500720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.