BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26821338)

  • 1. Patterned, tubular scaffolds mimic longitudinal and radial mechanics of the neonatal trachea.
    Mansfield EG; Greene VK; Auguste DT
    Acta Biomater; 2016 Mar; 33():176-82. PubMed ID: 26821338
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Boazak EM; Benson JM; Auguste DT
    ACS Biomater Sci Eng; 2017 Dec; 3(12):3222-3229. PubMed ID: 33445364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing a tissue-engineered tracheal scaffold for preclinical evaluation.
    Best CA; Pepper VK; Ohst D; Bodnyk K; Heuer E; Onwuka EA; King N; Strouse R; Grischkan J; Breuer CK; Johnson J; Chiang T
    Int J Pediatr Otorhinolaryngol; 2018 Jan; 104():155-160. PubMed ID: 29287858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical and biochemical characterization of porcine tracheal cartilage.
    Hoffman B; Martin M; Brown BN; Bonassar LJ; Cheetham J
    Laryngoscope; 2016 Oct; 126(10):E325-31. PubMed ID: 26825682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the biomechanical properties of canine trachea using a customized 3D-printed apparatus.
    Lee JS; Park J; Shin DA; Ryu YJ; Kim HC; Lee JC; Kwon SK
    Auris Nasus Larynx; 2019 Jun; 46(3):407-416. PubMed ID: 30392980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprinted trachea constructs with patient-matched design, mechanical and biological properties.
    Ke D; Yi H; Est-Witte S; George S; Kengla C; Lee SJ; Atala A; Murphy SV
    Biofabrication; 2019 Dec; 12(1):015022. PubMed ID: 31671417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Large Airways.
    Khalid T; O'Leary C
    Adv Exp Med Biol; 2023; 1413():121-135. PubMed ID: 37195529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Evaluation of Tracheal Grafts on Different Scales.
    Aoki FG; Moriya HT
    Artif Organs; 2018 May; 42(5):476-483. PubMed ID: 29226358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characterization of design and compressive properties of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering.
    Johnson C; Sheshadri P; Ketchum JM; Narayanan LK; Weinberger PM; Shirwaiker RA
    J Mech Behav Biomed Mater; 2016 Jun; 59():572-585. PubMed ID: 27062124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair.
    Ott LM; Zabel TA; Walker NK; Farris AL; Chakroff JT; Ohst DG; Johnson JK; Gehrke SH; Weatherly RA; Detamore MS
    Biomed Mater; 2016 Apr; 11(2):025020. PubMed ID: 27097554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the biomechanical properties of the rabbit trachea.
    Jones MC; Rueggeberg FA; Faircloth HA; Cunningham AJ; Bush CM; Prosser JD; Waller JL; Postma GN; Weinberger PM
    Laryngoscope; 2014 Oct; 124(10):2352-8. PubMed ID: 24782429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printed Biomimetic PCL Scaffold as Framework Interspersed With Collagen for Long Segment Tracheal Replacement.
    She Y; Fan Z; Wang L; Li Y; Sun W; Tang H; Zhang L; Wu L; Zheng H; Chen C
    Front Cell Dev Biol; 2021; 9():629796. PubMed ID: 33553186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Standardised Approach to the Biomechanical Evaluation of Tracheal Grafts.
    Martínez-Hernández NJ; Mas-Estellés J; Milián-Medina L; Martínez-Ramos C; Cerón-Navarro J; Galbis-Caravajal J; Roig-Bataller A; Mata-Roig M
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel tissue-engineered trachea with a mechanical behavior similar to native trachea.
    Park JH; Hong JM; Ju YM; Jung JW; Kang HW; Lee SJ; Yoo JJ; Kim SW; Kim SH; Cho DW
    Biomaterials; 2015 Sep; 62():106-15. PubMed ID: 26041482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fetal tissue engineering: in utero tracheal augmentation in an ovine model.
    Fuchs JR; Terada S; Ochoa ER; Vacanti JP; Fauza DO
    J Pediatr Surg; 2002 Jul; 37(7):1000-6; discussion 1000-6. PubMed ID: 12077758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-Engineered Neo-Urinary Conduit from Decellularized Trachea.
    Singh A; Lee D; Jeong H; Yu C; Li J; Fang CH; Sabnekar P; Liu X; Yoshida T; Sopko N; Bivalacqua TJ
    Tissue Eng Part A; 2018 Oct; 24(19-20):1456-1467. PubMed ID: 29649957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds.
    Soares JS; Zhang W; Sacks MS
    Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a flexible 3D printed scaffold with a cell-adhesive surface for artificial trachea.
    Ahn CB; Son KH; Yu YS; Kim TH; Lee JI; Lee JW
    Biomed Mater; 2019 Jul; 14(5):055001. PubMed ID: 31207592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea.
    Kojima K; Bonassar LJ; Ignotz RA; Syed K; Cortiella J; Vacanti CA
    Ann Thorac Surg; 2003 Dec; 76(6):1884-8. PubMed ID: 14667605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autologous tissue-engineered trachea with sheep nasal chondrocytes.
    Kojima K; Bonassar LJ; Roy AK; Vacanti CA; Cortiella J
    J Thorac Cardiovasc Surg; 2002 Jun; 123(6):1177-84. PubMed ID: 12063466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.