These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 26821536)
1. Membrane roughness as a sensitive parameter reflecting the status of neuronal cells in response to chemical and nanoparticle treatments. Lee CW; Jang LL; Pan HJ; Chen YR; Chen CC; Lee CH J Nanobiotechnology; 2016 Jan; 14():9. PubMed ID: 26821536 [TBL] [Abstract][Full Text] [Related]
2. Increasing roughness of the human breast cancer cell membrane through incorporation of gold nanoparticles. Lara-Cruz C; Jiménez-Salazar JE; Ramón-Gallegos E; Damian-Matsumura P; Batina N Int J Nanomedicine; 2016; 11():5149-5161. PubMed ID: 27785020 [TBL] [Abstract][Full Text] [Related]
3. Substrate properties modulate cell membrane roughness by way of actin filaments. Chang CH; Lee HH; Lee CH Sci Rep; 2017 Aug; 7(1):9068. PubMed ID: 28831175 [TBL] [Abstract][Full Text] [Related]
4. Observation of nanoparticle internalization on cellular membranes by using noninterferometric widefield optical profilometry. Wang CC; Lee CW; Huang CY; Lin JY; Wei PK; Lee CH Appl Opt; 2008 May; 47(13):2458-64. PubMed ID: 18449313 [TBL] [Abstract][Full Text] [Related]
5. Negatively charged AuNP modified with monoclonal antibody against novel tumor antigen FAT1 for tumor targeting. Fan L; Campagnoli S; Wu H; Grandi A; Parri M; De Camilli E; Grandi G; Viale G; Pileri P; Grifantini R; Song C; Jin B J Exp Clin Cancer Res; 2015 Sep; 34(1):103. PubMed ID: 26373379 [TBL] [Abstract][Full Text] [Related]
6. Control of cell adhesion by mechanical reinforcement of soft polyelectrolyte films with nanoparticles. Schmidt S; Madaboosi N; Uhlig K; Köhler D; Skirtach A; Duschl C; Möhwald H; Volodkin DV Langmuir; 2012 May; 28(18):7249-57. PubMed ID: 22509757 [TBL] [Abstract][Full Text] [Related]
7. Slowed diffusion of single nanoparticles in the extracellular microenvironment of living cells revealed by darkfield microscopy. Zhou R; Xiong B; He Y; Yeung ES Anal Bioanal Chem; 2011 Jan; 399(1):353-9. PubMed ID: 21052644 [TBL] [Abstract][Full Text] [Related]
8. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. de Oliveira R; Zhao P; Li N; de Santa Maria LC; Vergnaud J; Ruiz J; Astruc D; Barratt G Int J Pharm; 2013 Oct; 454(2):703-11. PubMed ID: 23701998 [TBL] [Abstract][Full Text] [Related]
10. Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study. Bonanni A; Pumera M; Miyahara Y Phys Chem Chem Phys; 2011 Mar; 13(11):4980-6. PubMed ID: 21258669 [TBL] [Abstract][Full Text] [Related]
13. Gold nanoparticle uptake in whole cells in liquid examined by environmental scanning electron microscopy. Peckys DB; de Jonge N Microsc Microanal; 2014 Feb; 20(1):189-97. PubMed ID: 24444043 [TBL] [Abstract][Full Text] [Related]
14. Imidazole-stabilized gold nanoparticles induce neuronal apoptosis: an in vitro and in vivo study. Imperatore R; Carotenuto G; Di Grazia MA; Ferrandino I; Palomba L; Mariotti R; Vitale E; De Nicola S; Longo A; Cristino L J Biomed Mater Res A; 2015 Apr; 103(4):1436-46. PubMed ID: 25046830 [TBL] [Abstract][Full Text] [Related]
15. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Shenoy D; Little S; Langer R; Amiji M Mol Pharm; 2005; 2(5):357-66. PubMed ID: 16196488 [TBL] [Abstract][Full Text] [Related]
16. Gold nanoparticle-mediated laser stimulation induces a complex stress response in neuronal cells. Johannsmeier S; Heeger P; Terakawa M; Kalies S; Heisterkamp A; Ripken T; Heinemann D Sci Rep; 2018 Apr; 8(1):6533. PubMed ID: 29695746 [TBL] [Abstract][Full Text] [Related]
17. Scale-independent roughness value of cell membranes studied by means of AFM technique. Antonio PD; Lasalvia M; Perna G; Capozzi V Biochim Biophys Acta; 2012 Dec; 1818(12):3141-8. PubMed ID: 22897980 [TBL] [Abstract][Full Text] [Related]
18. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials. Checketts MR; Turkyilmaz I; Asar NV J Prosthet Dent; 2014 Nov; 112(5):1265-70. PubMed ID: 24831748 [TBL] [Abstract][Full Text] [Related]
19. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Liu X; Huang N; Li H; Jin Q; Ji J Langmuir; 2013 Jul; 29(29):9138-48. PubMed ID: 23815604 [TBL] [Abstract][Full Text] [Related]
20. Oligolayer-coated nanoparticles: impact of surface topography at the nanobio interface. Wurster EC; Liebl R; Michaelis S; Robelek R; Wastl DS; Giessibl FJ; Goepferich A; Breunig M ACS Appl Mater Interfaces; 2015 Apr; 7(15):7891-900. PubMed ID: 25815610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]