These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26821575)

  • 1. Exploring De Novo metabolic pathways from pyruvate to propionic acid.
    Stine A; Zhang M; Ro S; Clendennen S; Shelton MC; Tyo KE; Broadbelt LJ
    Biotechnol Prog; 2016 Mar; 32(2):303-11. PubMed ID: 26821575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate.
    Henry CS; Broadbelt LJ; Hatzimanikatis V
    Biotechnol Bioeng; 2010 Jun; 106(3):462-73. PubMed ID: 20091733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of bulk chemicals via novel metabolic pathways in microorganisms.
    Shin JH; Kim HU; Kim DI; Lee SY
    Biotechnol Adv; 2013 Nov; 31(6):925-35. PubMed ID: 23280013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational approach to design and evaluate enzymatic reaction pathways: application to 1-butanol production from pyruvate.
    Wu D; Wang Q; Assary RS; Broadbelt LJ; Krilov G
    J Chem Inf Model; 2011 Jul; 51(7):1634-47. PubMed ID: 21671635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating computational methods to retrofit enzymes to synthetic pathways.
    Brunk E; Neri M; Tavernelli I; Hatzimanikatis V; Rothlisberger U
    Biotechnol Bioeng; 2012 Feb; 109(2):572-82. PubMed ID: 21928337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DREAMS of metabolism.
    Soh KC; Hatzimanikatis V
    Trends Biotechnol; 2010 Oct; 28(10):501-8. PubMed ID: 20727603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-timescale analysis of a metabolic network in synthetic biology: a kinetic model for 3-hydroxypropionic acid production via beta-alanine.
    Dalwadi MP; King JR; Minton NP
    J Math Biol; 2018 Jul; 77(1):165-199. PubMed ID: 29159570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATLAS of Biochemistry: A Repository of All Possible Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies.
    Hadadi N; Hafner J; Shajkofci A; Zisaki A; Hatzimanikatis V
    ACS Synth Biol; 2016 Oct; 5(10):1155-1166. PubMed ID: 27404214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational tools for guided discovery and engineering of metabolic pathways.
    Moura M; Broadbelt L; Tyo K
    Methods Mol Biol; 2013; 985():123-47. PubMed ID: 23417803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics.
    Jeffryes JG; Colastani RL; Elbadawi-Sidhu M; Kind T; Niehaus TD; Broadbelt LJ; Hanson AD; Fiehn O; Tyo KE; Henry CS
    J Cheminform; 2015; 7():44. PubMed ID: 26322134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic In Silico Network Expansions to Predict and Exploit Enzyme Promiscuity.
    Jeffryes J; Strutz J; Henry C; Tyo KEJ
    Methods Mol Biol; 2019; 1927():11-21. PubMed ID: 30788782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design.
    Ni Z; Stine AE; Tyo KEJ; Broadbelt LJ
    Metab Eng; 2021 May; 65():79-87. PubMed ID: 33662575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the diversity of complex metabolic networks.
    Hatzimanikatis V; Li C; Ionita JA; Henry CS; Jankowski MD; Broadbelt LJ
    Bioinformatics; 2005 Apr; 21(8):1603-9. PubMed ID: 15613400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the combinatorial space of complete pathways to chemicals.
    Wang L; Ng CY; Dash S; Maranas CD
    Biochem Soc Trans; 2018 Jun; 46(3):513-522. PubMed ID: 29626146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ARBRE: Computational resource to predict pathways towards industrially important aromatic compounds.
    Sveshnikova A; MohammadiPeyhani H; Hatzimanikatis V
    Metab Eng; 2022 Jul; 72():259-274. PubMed ID: 35381376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production.
    Xu G; Hua Q; Duan N; Liu L; Chen J
    Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the organization and interactivity of metabolic pathfinding with precomputed pathways.
    Kim SM; Peña MI; Moll M; Bennett GN; Kavraki LE
    BMC Bioinformatics; 2020 Jan; 21(1):13. PubMed ID: 31924164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation.
    Kandasamy V; Vaidyanathan H; Djurdjevic I; Jayamani E; Ramachandran KB; Buckel W; Jayaraman G; Ramalingam S
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1191-200. PubMed ID: 22810300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational tools and resources for designing new pathways to small molecules.
    Sveshnikova A; MohammadiPeyhani H; Hatzimanikatis V
    Curr Opin Biotechnol; 2022 Aug; 76():102722. PubMed ID: 35483185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational screening of novel thiamine-catalyzed decarboxylation reactions of 2-keto acids.
    Assary RS; Broadbelt LJ
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):375-88. PubMed ID: 21061135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.