These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26821598)

  • 41. Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or three-dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome oxidase monitoring.
    Xu X; Wang RK; El Haj A
    Eur Biophys J; 2003 Jul; 32(4):355-62. PubMed ID: 12851793
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional cardiac tissue fabrication based on cell sheet technology.
    Masuda S; Shimizu T
    Adv Drug Deliv Rev; 2016 Jan; 96():103-9. PubMed ID: 25980939
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro evaluation of poly (lactic-co-glycolic acid)/polyisoprene fibers for soft tissue engineering.
    Marques DR; Dos Santos LAL; O'Brien MA; Cartmell SH; Gough JE
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2581-2591. PubMed ID: 27712036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering.
    Wu Y; Wang Z; Ying Hsi Fuh J; San Wong Y; Wang W; San Thian E
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):616-627. PubMed ID: 26671608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of skeletal myotube formation and alignment by nanotopographically controlled cell-secreted extracellular matrix.
    Jiao A; Moerk CT; Penland N; Perla M; Kim J; Smith AST; Murry CE; Kim DH
    J Biomed Mater Res A; 2018 Jun; 106(6):1543-1551. PubMed ID: 29368451
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of in vivo tissue-engineered microvascular grafts with an ultra small diameter of 0.6 mm (MicroBiotubes): acute phase evaluation by optical coherence tomography and magnetic resonance angiography.
    Ishii D; Enmi J; Moriwaki T; Ishibashi-Ueda H; Kobayashi M; Iwana S; Iida H; Satow T; Takahashi JC; Kurisu K; Nakayama Y
    J Artif Organs; 2016 Sep; 19(3):262-9. PubMed ID: 27003431
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual perfluorocarbon method to noninvasively monitor dissolved oxygen concentration in tissue engineered constructs in vitro and in vivo.
    Goh F; Long R; Simpson N; Sambanis A
    Biotechnol Prog; 2011 Jul; 27(4):1115-25. PubMed ID: 21608139
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of oxygen gradients in engineered tissue using a fluorescent sensor.
    Kellner K; Liebsch G; Klimant I; Wolfbeis OS; Blunk T; Schulz MB; Göpferich A
    Biotechnol Bioeng; 2002 Oct; 80(1):73-83. PubMed ID: 12209788
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: Synthesis, characterization, and myoblast proliferation and differentiation.
    Baheiraei N; Gharibi R; Yeganeh H; Miragoli M; Salvarani N; Di Pasquale E; Condorelli G
    J Biomed Mater Res A; 2016 Mar; 104(3):775-787. PubMed ID: 26540140
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering.
    Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y
    J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical Metric Assessed Engineered Tissues Over a Range of Viability States.
    Chen LC; Kuo S; Lloyd WR; Kim HM; Marcelo CL; Feinberg SE; Mycek MA
    Tissue Eng Part C Methods; 2019 May; 25(5):305-313. PubMed ID: 30973066
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue.
    Brown DA; MacLellan WR; Laks H; Dunn JC; Wu BM; Beygui RE
    Biotechnol Bioeng; 2007 Jul; 97(4):962-75. PubMed ID: 17195988
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On-line monitoring of oxygen as a non-destructive method to quantify cells in engineered 3D tissue constructs.
    Santoro R; Krause C; Martin I; Wendt D
    J Tissue Eng Regen Med; 2012 Oct; 6(9):696-701. PubMed ID: 21932277
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function.
    Ostrovidov S; Ahadian S; Ramon-Azcon J; Hosseini V; Fujie T; Parthiban SP; Shiku H; Matsue T; Kaji H; Ramalingam M; Bae H; Khademhosseini A
    J Tissue Eng Regen Med; 2017 Feb; 11(2):582-595. PubMed ID: 25393357
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of the application of the generalized monod kinetics model to describe the human corneal oxygen-consumption rate during soft contact lens wear.
    Compañ V; Aguilella-Arzo M; Del Castillo LF; Hernández SI; Gonzalez-Meijome JM
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2269-2281. PubMed ID: 27459544
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis.
    Boccardo S; Gaudiello E; Melly L; Cerino G; Ricci D; Martin I; Eckstein F; Banfi A; Marsano A
    Acta Biomater; 2016 Sep; 42():127-135. PubMed ID: 27469308
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography.
    Boone M; Draye JP; Verween G; Pirnay JP; Verbeken G; De Vos D; Rose T; Jennes S; Jemec GB; Del Marmol V
    Exp Dermatol; 2014 Oct; 23(10):725-30. PubMed ID: 25047067
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical transillumination tomography for imaging of tissue-engineered blood vessels.
    Gladish JC; Yao G; L'Heureux N; Haidekker MA
    Ann Biomed Eng; 2005 Mar; 33(3):323-7. PubMed ID: 15868722
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclic mechanical preconditioning improves engineered muscle contraction.
    Moon du G; Christ G; Stitzel JD; Atala A; Yoo JJ
    Tissue Eng Part A; 2008 Apr; 14(4):473-82. PubMed ID: 18399787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.