These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26822011)

  • 1. Ferrous ion regulated extracellular electron transfer: towards self-suppressed microbial iron(III) oxide reduction.
    Yao Y; Huang X
    Chem Commun (Camb); 2016 Feb; 52(16):3324-7. PubMed ID: 26822011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems.
    Zhou S; Tang J; Yuan Y
    Bioelectrochemistry; 2015 Apr; 102():29-34. PubMed ID: 25483997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Microbial reduction ability of various iron oxides in pure culture experiment].
    Qu D; Schnell S
    Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):745-9. PubMed ID: 12552834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron in evolution.
    Williams RJ
    FEBS Lett; 2012 Mar; 586(5):479-84. PubMed ID: 21704034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of ferrous/ferric ions on the efficiency of photocatalytic oxidation of pollutants in groundwater.
    Klauson D; Preis S; Portjanskaja E; Kachina A; Krichevskaya M; Kallas J
    Environ Technol; 2005 Jun; 26(6):653-61. PubMed ID: 16035658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides.
    Kondo K; Okamoto A; Hashimoto K; Nakamura R
    Langmuir; 2015 Jul; 31(26):7427-34. PubMed ID: 26070345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical investigation into the redox activity of Fe(II)/Fe(III) in the presence of nicotine and possible relations to neurodegenerative diseases.
    Bridge MH; Williams E; Lyons ME; Tipton KF; Linert W
    Biochim Biophys Acta; 2004 Sep; 1690(1):77-84. PubMed ID: 15337173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-transfer reduction of 1-deoxy-1-nitroalditols to glycamines with ferrous hydroxide.
    Pribulová B; Petrušová M; Smrtičová H; Petruš L
    Carbohydr Res; 2012 Dec; 363():62-5. PubMed ID: 23123574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexation of nicotinamide adenine dinucleotide with ferric and ferrous ions.
    Lvovich V; Scheeline A
    Arch Biochem Biophys; 1995 Jun; 320(1):1-13. PubMed ID: 7793967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic reduction of ROOH by iron porphyrins.
    Collman JP; Kaplun M; Sunderland CJ; Boulatov R
    J Am Chem Soc; 2004 Sep; 126(36):11166-7. PubMed ID: 15355094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realistic quantitative descriptions of electron transfer reactions: diabatic free-energy surfaces from first-principles molecular dynamics.
    Sit PH; Cococcioni M; Marzari N
    Phys Rev Lett; 2006 Jul; 97(2):028303. PubMed ID: 16907484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential electron donor for nanoiron supported hydrogenotrophic denitrification: H
    Xu C; Wang X; An Y; Yue J; Zhang R
    Chemosphere; 2018 Jul; 202():644-650. PubMed ID: 29597182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: in situ X-ray scattering and spectroscopy studies.
    Wang W; Pleasants J; Bu W; Park RY; Kuzmenko I; Vaknin D
    J Colloid Interface Sci; 2012 Oct; 384(1):45-54. PubMed ID: 22818795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling.
    Latta DE; Gorski CA; Scherer MM
    Biochem Soc Trans; 2012 Dec; 40(6):1191-7. PubMed ID: 23176453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrous and Ferric Ion-Facilitated Dilute Acid Pretreatment of Lignocellulosic Biomass under Anaerobic or Aerobic Conditions: Observations of Fe Valence Interchange and the Role of Fenton Reaction.
    Wei H; Wang W; Ciesielski PN; Donohoe BS; Zhang M; Himmel ME; Chen X; Tucker MP
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32245102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity.
    Lovley DR
    Biochem Soc Trans; 2012 Dec; 40(6):1186-90. PubMed ID: 23176452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles.
    Shultz MD; Reveles JU; Khanna SN; Carpenter EE
    J Am Chem Soc; 2007 Mar; 129(9):2482-7. PubMed ID: 17290990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.
    Li X; Liu L; Liu T; Yuan T; Zhang W; Li F; Zhou S; Li Y
    Chemosphere; 2013 Jun; 92(2):218-24. PubMed ID: 23461838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.