BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26822083)

  • 1. PGC-1α Coordinates Mitochondrial Respiratory Capacity and Muscular Fatty Acid Uptake via Regulation of VEGF-B.
    Mehlem A; Palombo I; Wang X; Hagberg CE; Eriksson U; Falkevall A
    Diabetes; 2016 Apr; 65(4):861-73. PubMed ID: 26822083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced lipid-but not carbohydrate-supported mitochondrial respiration in skeletal muscle of PGC-1α overexpressing mice.
    Hoeks J; Arany Z; Phielix E; Moonen-Kornips E; Hesselink MK; Schrauwen P
    J Cell Physiol; 2012 Mar; 227(3):1026-33. PubMed ID: 21520076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism.
    Choi CS; Befroy DE; Codella R; Kim S; Reznick RM; Hwang YJ; Liu ZX; Lee HY; Distefano A; Samuel VT; Zhang D; Cline GW; Handschin C; Lin J; Petersen KF; Spiegelman BM; Shulman GI
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19926-31. PubMed ID: 19066218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle.
    Huss JM; Torra IP; Staels B; Giguère V; Kelly DP
    Mol Cell Biol; 2004 Oct; 24(20):9079-91. PubMed ID: 15456881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha.
    Arany Z; Foo SY; Ma Y; Ruas JL; Bommi-Reddy A; Girnun G; Cooper M; Laznik D; Chinsomboon J; Rangwala SM; Baek KH; Rosenzweig A; Spiegelman BM
    Nature; 2008 Feb; 451(7181):1008-12. PubMed ID: 18288196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid-induced differential regulation of the genes encoding peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta in human skeletal muscle cells that have been differentiated in vitro.
    Staiger H; Staiger K; Haas C; Weisser M; Machicao F; Häring HU
    Diabetologia; 2005 Oct; 48(10):2115-8. PubMed ID: 16132959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular endothelial growth factor B controls endothelial fatty acid uptake.
    Hagberg CE; Falkevall A; Wang X; Larsson E; Huusko J; Nilsson I; van Meeteren LA; Samen E; Lu L; Vanwildemeersch M; Klar J; Genove G; Pietras K; Stone-Elander S; Claesson-Welsh L; Ylä-Herttuala S; Lindahl P; Eriksson U
    Nature; 2010 Apr; 464(7290):917-21. PubMed ID: 20228789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha overexpression increases lipid oxidation in myocytes from extremely obese individuals.
    Consitt LA; Bell JA; Koves TR; Muoio DM; Hulver MW; Haynie KR; Dohm GL; Houmard JA
    Diabetes; 2010 Jun; 59(6):1407-15. PubMed ID: 20200320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes.
    Huang TY; Zheng D; Houmard JA; Brault JJ; Hickner RC; Cortright RN
    Am J Physiol Endocrinol Metab; 2017 Apr; 312(4):E253-E263. PubMed ID: 28073778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria.
    Benton CR; Nickerson JG; Lally J; Han XX; Holloway GP; Glatz JF; Luiken JJ; Graham TE; Heikkila JJ; Bonen A
    J Biol Chem; 2008 Feb; 283(7):4228-40. PubMed ID: 18079123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity.
    Summermatter S; Troxler H; Santos G; Handschin C
    Biochem Biophys Res Commun; 2011 Apr; 408(1):180-5. PubMed ID: 21501593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth.
    Lu X; Hu S; Liao Y; Zheng J; Zeng T; Zhong X; Liu G; Gou L; Chen L
    Am J Physiol Endocrinol Metab; 2020 Dec; 319(6):E1031-E1043. PubMed ID: 32954823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-1α.
    Ringholm S; Olesen J; Pedersen JT; Brandt CT; Halling JF; Hellsten Y; Prats C; Pilegaard H
    Exp Gerontol; 2013 Nov; 48(11):1311-8. PubMed ID: 23994519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of endothelial dynamics by PGC-1α relies on ROS control of VEGF-A signaling.
    García-Quintans N; Prieto I; Sánchez-Ramos C; Luque A; Arza E; Olmos Y; Monsalve M
    Free Radic Biol Med; 2016 Apr; 93():41-51. PubMed ID: 26828021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice.
    Leick L; Hellsten Y; Fentz J; Lyngby SS; Wojtaszewski JF; Hidalgo J; Pilegaard H
    Am J Physiol Endocrinol Metab; 2009 Jul; 297(1):E92-103. PubMed ID: 19401459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to beta2-adrenergic receptor activation and exercise.
    Miura S; Kai Y; Kamei Y; Ezaki O
    Endocrinology; 2008 Sep; 149(9):4527-33. PubMed ID: 18511502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved skeletal muscle Ca
    Eshima H; Miura S; Senoo N; Hatakeyama K; Poole DC; Kano Y
    Am J Physiol Regul Integr Comp Physiol; 2017 Jun; 312(6):R1017-R1028. PubMed ID: 28438761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exchange protein directly activated by cAMP (Epac) 1 plays an essential role in stress-induced exercise capacity by regulating PGC-1α and fatty acid metabolism in skeletal muscle.
    So WK; Kim HK; Chen Y; Jeong SH; Yeung PKK; Chow BCK; Han J; Chung SK
    Pflugers Arch; 2020 Feb; 472(2):195-216. PubMed ID: 31955265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by truncated peroxisome proliferator-activated receptor γ coactivator (PGC)-1α.
    Thom R; Rowe GC; Jang C; Safdar A; Arany Z
    J Biol Chem; 2014 Mar; 289(13):8810-7. PubMed ID: 24505137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of PGC-1α on the topology and rate of superoxide production by the mitochondrial electron transport chain.
    Austin S; Klimcakova E; St-Pierre J
    Free Radic Biol Med; 2011 Dec; 51(12):2243-8. PubMed ID: 21964033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.