These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 26822136)
1. A trehalase from Zunongwangia sp.: characterization and improving catalytic efficiency by directed evolution. Cheng Q; Gao H; Hu N BMC Biotechnol; 2016 Jan; 16():9. PubMed ID: 26822136 [TBL] [Abstract][Full Text] [Related]
2. A highly thermostable trehalase from the thermophilic bacterium Rhodothermus marinus. Jorge CD; Sampaio MM; Hreggvidsson GO; Kristjánson JK; Santos H Extremophiles; 2007 Jan; 11(1):115-22. PubMed ID: 16944251 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a novel cold active and salt tolerant esterase from Zunongwangia profunda. Rahman MA; Culsum U; Tang W; Zhang SW; Wu G; Liu Z Enzyme Microb Technol; 2016 Apr; 85():1-11. PubMed ID: 26920474 [TBL] [Abstract][Full Text] [Related]
4. Identification of GH15 Family Thermophilic Archaeal Trehalases That Function within a Narrow Acidic-pH Range. Sakaguchi M; Shimodaira S; Ishida SN; Amemiya M; Honda S; Sugahara Y; Oyama F; Kawakita M Appl Environ Microbiol; 2015 Aug; 81(15):4920-31. PubMed ID: 25979886 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a cytoplasmic trehalase of Escherichia coli. Horlacher R; Uhland K; Klein W; Ehrmann M; Boos W J Bacteriol; 1996 Nov; 178(21):6250-7. PubMed ID: 8892826 [TBL] [Abstract][Full Text] [Related]
6. Exploration of novel trehalases from cold-adapted Variovorax sp. PAMC28711: Functional characterization. Shrestha P; Karmacharya J; Kim KH; Han SR; Oh TJ Int J Biol Macromol; 2024 Jun; 271(Pt 1):132503. PubMed ID: 38768913 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning and in silico studies of physiologically significant trehalase from Drosophila melanogaster. Shukla E; Thorat L; Bhavnani V; Bendre AD; Pal JK; Nath BB; Gaikwad SM Int J Biol Macromol; 2016 Nov; 92():282-292. PubMed ID: 27377458 [TBL] [Abstract][Full Text] [Related]
8. A novel cold-active and salt-tolerant α-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Qin Y; Huang Z; Liu Z Extremophiles; 2014 Mar; 18(2):271-81. PubMed ID: 24318109 [TBL] [Abstract][Full Text] [Related]
9. Structure-activity relationship of a cold-adapted purine nucleoside phosphorylase by site-directed mutagenesis. Xie X; Huo W; Xia J; Xu Q; Chen N Enzyme Microb Technol; 2012 Jun; 51(1):59-65. PubMed ID: 22579392 [TBL] [Abstract][Full Text] [Related]
10. A novel trehalase from Mycobacterium smegmatis - purification, properties, requirements. Carroll JD; Pastuszak I; Edavana VK; Pan YT; Elbein AD FEBS J; 2007 Apr; 274(7):1701-14. PubMed ID: 17319935 [TBL] [Abstract][Full Text] [Related]
11. Expression and characterization of a novel trehalase from Microvirga sp. strain MC18. Dong C; Fan Q; Li X; Huang Y; Han J; Fang X; Huan M; Ye X; Li Z; Cui Z Protein Expr Purif; 2021 Jun; 182():105846. PubMed ID: 33592252 [TBL] [Abstract][Full Text] [Related]
12. The catalytic and other residues essential for the activity of the midgut trehalase from Spodoptera frugiperda. Silva MC; Terra WR; Ferreira C Insect Biochem Mol Biol; 2010 Oct; 40(10):733-41. PubMed ID: 20691783 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning of cDNA for trehalase from the European honeybee, Apis mellifera L., and its heterologous expression in Pichia pastoris. Lee JH; Saito S; Mori H; Nishimoto M; Okuyama M; Kim D; Wongchawalit J; Kimura A; Chiba S Biosci Biotechnol Biochem; 2007 Sep; 71(9):2256-65. PubMed ID: 17827701 [TBL] [Abstract][Full Text] [Related]
14. Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Wera S; De Schrijver E; Geyskens I; Nwaka S; Thevelein JM Biochem J; 1999 Nov; 343 Pt 3(Pt 3):621-6. PubMed ID: 10527941 [TBL] [Abstract][Full Text] [Related]
15. Characterization and site-directed mutagenesis of an α-galactosidase from the deep-sea bacterium Bacillus megaterium. Xu H; Qin Y; Huang Z; Liu Z Enzyme Microb Technol; 2014 Mar; 56():46-52. PubMed ID: 24564902 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic insights into enzymatic catalysis by trehalase from the insect gut endosymbiont Enterobacter cloacae. Adhav A; Harne S; Bhide A; Giri A; Gayathri P; Joshi R FEBS J; 2019 May; 286(9):1700-1716. PubMed ID: 30657252 [TBL] [Abstract][Full Text] [Related]
17. Directed evolution of a family 26 glycoside hydrolase: endo-β-1, 4-mannanase from Pantoea agglomerans A021. Wang J; Zhang Q; Huang Z; Liu Z J Biotechnol; 2013 Sep; 167(3):350-6. PubMed ID: 23835158 [TBL] [Abstract][Full Text] [Related]
18. Characterization and directed evolution of BliGO, a novel glycine oxidase from Bacillus licheniformis. Zhang K; Guo Y; Yao P; Lin Y; Kumar A; Liu Z; Wu G; Zhang L Enzyme Microb Technol; 2016 Apr; 85():12-8. PubMed ID: 26920475 [TBL] [Abstract][Full Text] [Related]
19. Studies on the molecular docking and amino Acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis. Jing Z; Feng H Protein J; 2015 Jun; 34(3):173-80. PubMed ID: 25957260 [TBL] [Abstract][Full Text] [Related]
20. Engineering of pyranose 2-oxidase from Peniophora gigantea towards improved thermostability and catalytic efficiency. Bastian S; Rekowski MJ; Witte K; Heckmann-Pohl DM; Giffhorn F Appl Microbiol Biotechnol; 2005 Jun; 67(5):654-63. PubMed ID: 15660220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]