BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26822141)

  • 1. Towards a novel bioelectrocatalytic platform based on "wiring" of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture.
    Gladisch J; Sarauli D; Schäfer D; Dietzel B; Schulz B; Lisdat F
    Sci Rep; 2016 Jan; 6():19858. PubMed ID: 26822141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differently substituted sulfonated polyanilines: the role of polymer compositions in electron transfer with pyrroloquinoline quinone-dependent glucose dehydrogenase.
    Sarauli D; Xu C; Dietzel B; Schulz B; Lisdat F
    Acta Biomater; 2013 Sep; 9(9):8290-8. PubMed ID: 23777884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous polythiophene electrosynthesis: A new route to an efficient electrode coupling of PQQ-dependent glucose dehydrogenase for sensing and bioenergetic applications.
    Fusco G; Göbel G; Zanoni R; Bracciale MP; Favero G; Mazzei F; Lisdat F
    Biosens Bioelectron; 2018 Jul; 112():8-17. PubMed ID: 29684749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anchoring PQQ-Glucose Dehydrogenase with Electropolymerized Azines for the Most Efficient Bioelectrocatalysis.
    Komkova MA; Orlov AK; Galushin AA; Andreev EA; Karyakin AA
    Anal Chem; 2021 Sep; 93(35):12116-12121. PubMed ID: 34431658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wiring of PQQ-dehydrogenases.
    Laurinavicius V; Razumiene J; Ramanavicius A; Ryabov AD
    Biosens Bioelectron; 2004 Dec; 20(6):1217-22. PubMed ID: 15556370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.
    Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F
    Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-electrode architectures for enhanced direct bioelectrocatalysis of pyrroloquinoline quinone-dependent glucose dehydrogenase.
    Sarauli D; Peters K; Xu C; Schulz B; Fattakhova-Rohlfing D; Lisdat F
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17887-93. PubMed ID: 25230089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase immobilized on an electrode: a sensitive strategy for PQQ detection down to picomolar levels.
    Zhang L; Miranda-Castro R; Stines-Chaumeil C; Mano N; Xu G; Mavré F; Limoges B
    Anal Chem; 2014 Feb; 86(4):2257-67. PubMed ID: 24476605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental aspects of amperometric ATP biosensors based on entrapped enzymes.
    Weber C; Gauda E; Mizaikoff B; Kranz C
    Anal Bioanal Chem; 2009 Nov; 395(6):1729-35. PubMed ID: 19779927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.
    Aquino Neto S; Hickey DP; Milton RD; De Andrade AR; Minteer SD
    Biosens Bioelectron; 2015 Oct; 72():247-54. PubMed ID: 25988787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a (PQQ)-GDH-anode based on MWCNT-modified gold and its application in a glucose/O2-biofuel cell.
    Tanne C; Göbel G; Lisdat F
    Biosens Bioelectron; 2010 Oct; 26(2):530-5. PubMed ID: 20702080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrroloquinoline quinone-dependent glucose dehydrogenase bioelectrodes based on one-step electrochemical entrapment over single-wall carbon nanotubes.
    Quintero-Jaime AF; Conzuelo F; Cazorla-Amorós D; Morallón E
    Talanta; 2021 Sep; 232():122386. PubMed ID: 34074388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyazine nanoparticles as anchors of PQQ glucose dehydrogenase for its most efficient bioelectrocatalysis.
    Komkova MA; Alexandrovich AS; Karyakin AA
    Talanta; 2024 Jan; 267():125219. PubMed ID: 37734286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of pyrroloquinoline quinone dependent glucose dehydrogenase to (cytochrome c/DNA)-multilayer systems on electrodes.
    Wettstein Ch; Möhwald H; Lisdat F
    Bioelectrochemistry; 2012 Dec; 88():97-102. PubMed ID: 22814119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.
    Yan YM; Yehezkeli O; Willner I
    Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells.
    Katz E; Lioubashevski O; Willner I
    J Am Chem Soc; 2005 Mar; 127(11):3979-88. PubMed ID: 15771535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphiphilic Polymer Mediators Promoting Electron Transfer on Bioanodes with PQQ-Dependent Glucose Dehydrogenase.
    Nakashima Y; Mizoshita N; Tanaka H; Nakaoki Y
    Langmuir; 2016 Dec; 32(49):12986-12994. PubMed ID: 27951709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium hexacyanoferrate modified biosensor based on PQQ-dependent glucose dehydrogenase.
    Tseng TF; Yang YL; Lou SL
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2681-4. PubMed ID: 18002547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Biofuel Cell Using a Complex of Highly Oriented Immobilized His-Tagged Enzyme and Carbon Nanotube Surface Through a Pyrene Derivative.
    Sakamoto H; Koto A; Takamura EI; Asakawa H; Fukuma T; Satomura T; Suye SI
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3551-3557. PubMed ID: 30744784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of carbon nanotube electrodes with 1-pyrenebutanoic acid, succinimidyl ester for enhanced bioelectrocatalysis.
    Strack G; Nichols R; Atanassov P; Luckarift HR; Johnson GR
    Methods Mol Biol; 2013; 1051():217-28. PubMed ID: 23934807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.