BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26822323)

  • 1. Monitoring of minimal residual disease in early T-cell precursor acute lymphoblastic leukaemia by next-generation sequencing.
    Pan X; Nariai N; Fukuhara N; Saito S; Sato Y; Katsuoka F; Kojima K; Kuroki Y; Danjoh I; Saito R; Hasegawa S; Okitsu Y; Kondo A; Onishi Y; Nagami F; Kiyomoto H; Hozawa A; Fuse N; Nagasaki M; Shimizu R; Yasuda J; Harigae H; Yamamoto M
    Br J Haematol; 2017 Jan; 176(2):318-321. PubMed ID: 26822323
    [No Abstract]   [Full Text] [Related]  

  • 2. Next-generation sequencing of PTEN mutations for monitoring minimal residual disease in T-cell acute lymphoblastic leukemia.
    Germano G; Valsecchi MG; Buldini B; Cazzaniga G; Zanon C; Silvestri D; Te Kronnie G; Basso G; Paganin M
    Pediatr Blood Cancer; 2020 Jan; 67(1):e28025. PubMed ID: 31571345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital droplet PCR and next-generation sequencing refine minimal residual disease monitoring in acute lymphoblastic leukemia.
    Della Starza I; De Novi LA; Santoro A; Salemi D; Tam W; Cavalli M; Menale L; Soscia R; Apicella V; Ilari C; Vitale A; Testi AM; Inghirami G; Chiaretti S; Foà R; Guarini A
    Leuk Lymphoma; 2019 Nov; 60(11):2838-2840. PubMed ID: 31050551
    [No Abstract]   [Full Text] [Related]  

  • 4. Test trial of spike-in immunoglobulin heavy-chain (IGH) controls for next generation sequencing quantification of minimal residual disease in acute lymphoblastic leukaemia.
    Giusti GNN; Jotta PY; Lopes CO; Ganazza MA; de Azevedo AC; Brandalise SR; Meidanis J; Yunes JA
    Br J Haematol; 2020 May; 189(4):e150-e154. PubMed ID: 32187384
    [No Abstract]   [Full Text] [Related]  

  • 5. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia.
    Wu D; Sherwood A; Fromm JR; Winter SS; Dunsmore KP; Loh ML; Greisman HA; Sabath DE; Wood BL; Robins H
    Sci Transl Med; 2012 May; 4(134):134ra63. PubMed ID: 22593176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing.
    Malmberg EB; Ståhlman S; Rehammar A; Samuelsson T; Alm SJ; Kristiansson E; Abrahamsson J; Garelius H; Pettersson L; Ehinger M; Palmqvist L; Fogelstrand L
    Eur J Haematol; 2017 Jan; 98(1):26-37. PubMed ID: 27197529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early T precursor acute lymphoblastic leukaemia/lymphoma shows differential immunophenotypic characteristics including frequent CD33 expression and in vitro response to targeted CD33 therapy.
    Khogeer H; Rahman H; Jain N; Angelova EA; Yang H; Quesada A; Ok CY; Sui D; Wei P; Al Fattani A; Pierce S; Loghavi S; Lamb A; Hu P; Thakral B; Kanagal-Shamanna R; Jorgensen JL; Jabbour EJ; Kantarjian HM; Medeiros LJ; Khoury JD
    Br J Haematol; 2019 Aug; 186(4):538-548. PubMed ID: 31115909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-Generation Sequencing in Adult B Cell Acute Lymphoblastic Leukemia Patients.
    Sala Torra O; Othus M; Williamson DW; Wood B; Kirsch I; Robins H; Beppu L; O'Donnell MR; Forman SJ; Appelbaum FR; Radich JP
    Biol Blood Marrow Transplant; 2017 Apr; 23(4):691-696. PubMed ID: 28062215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-loci diagnosis of acute lymphoblastic leukaemia with high-throughput sequencing and bioinformatics analysis.
    Ferret Y; Caillault A; Sebda S; Duez M; Grardel N; Duployez N; Villenet C; Figeac M; Preudhomme C; Salson M; Giraud M
    Br J Haematol; 2016 May; 173(3):413-20. PubMed ID: 26898266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone marrow minimal disseminated disease (MDD) and minimal residual disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by flow cytometry (FC) and real-time quantitative polymerase chain reaction (RQ-PCR).
    Stark B; Avigad S; Luria D; Manor S; Reshef-Ronen T; Avrahami G; Yaniv I
    Pediatr Blood Cancer; 2009 Jan; 52(1):20-5. PubMed ID: 19006253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B-cell lymphoma/leukaemia 11B (BCL11B) expression status helps distinguish early T-cell precursor acute lymphoblastic leukaemia/lymphoma (ETP-ALL/LBL) from other subtypes of T-cell ALL/LBL.
    Fang H; Wang W; El Hussein S; Morita K; Beird HC; Mitra A; Loghavi S; Lin P; Jabbour EJ; Khoury JD
    Br J Haematol; 2021 Sep; 194(6):1034-1038. PubMed ID: 34402058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical utility of next-generation sequencing-based minimal residual disease in paediatric B-cell acute lymphoblastic leukaemia.
    Sekiya Y; Xu Y; Muramatsu H; Okuno Y; Narita A; Suzuki K; Wang X; Kawashima N; Sakaguchi H; Yoshida N; Hama A; Takahashi Y; Kato K; Kojima S
    Br J Haematol; 2017 Jan; 176(2):248-257. PubMed ID: 27861730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinicopathological and immunophenotypic features of early T cell precursor acute lymphoblastic leukaemia: A flow cytometry score for the initial diagnosis.
    Chandra D; Singh MK; Gupta R; Rahman K; Yadav DD; Sarkar MK; Gupta A; Yadav S; Kashyap R; Nityanand S
    Int J Lab Hematol; 2021 Dec; 43(6):1417-1423. PubMed ID: 34115925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation sequencing in the diagnosis and minimal residual disease assessment of acute myeloid leukemia.
    Levine RL; Valk PJM
    Haematologica; 2019 May; 104(5):868-871. PubMed ID: 30923100
    [No Abstract]   [Full Text] [Related]  

  • 15. Clinical impact of low-burden BCR-ABL1 mutations detectable by amplicon deep sequencing in Philadelphia-positive acute lymphoblastic leukemia patients.
    Soverini S; De Benedittis C; Papayannidis C; Polakova KM; Venturi C; Russo D; Bresciani P; Iurlo A; Mancini M; Vitale A; Chiaretti S; Foà R; Abruzzese E; Sorà F; Kohlmann A; Haferlach T; Baccarani M; Cavo M; Martinelli G
    Leukemia; 2016 Jul; 30(7):1615-9. PubMed ID: 26867670
    [No Abstract]   [Full Text] [Related]  

  • 16. Minimal/Measurable Residual Disease Monitoring in Patients with Lymphoid Neoplasms by High-Throughput Sequencing of the T-Cell Receptor.
    Tung JK; Jangam D; Ho CC; Fung E; Khodadoust MS; Kim YH; Zehnder JL; Stehr H; Zhang BM
    J Mol Diagn; 2023 Jun; 25(6):331-341. PubMed ID: 36870603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A tal-1 deletion as real-time quantitative polymerase chain reaction target for detection of minimal residual disease in T-lineage acute lymphoblastic leukemia].
    Wang L; Zhang LP; Li ZG; Cheng YF; Tian KG; Lu AD
    Zhonghua Er Ke Za Zhi; 2005 Mar; 43(3):170-3. PubMed ID: 15833185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal residual disease assessment in childhood acute lymphoblastic leukaemia: a Swedish multi-centre study comparing real-time polymerase chain reaction and multicolour flow cytometry.
    Thörn I; Forestier E; Botling J; Thuresson B; Wasslavik C; Björklund E; Li A; Lindström-Eriksson E; Malec M; Grönlund E; Torikka K; Heldrup J; Abrahamsson J; Behrendtz M; Söderhäll S; Jacobsson S; Olofsson T; Porwit A; Lönnerholm G; Rosenquist R; Sundström C
    Br J Haematol; 2011 Mar; 152(6):743-53. PubMed ID: 21250970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Next-Generation Sequencing-Based Mutational Profiling in Acute Lymphoblastic Leukemia.
    Aleem A; Haque AR; Roloff GW; Griffiths EA
    Curr Hematol Malig Rep; 2021 Oct; 16(5):394-404. PubMed ID: 34613552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Necessity of Myeloid Mutational Analysis in Early T-cell Precursor Acute Lymphoblastic Leukemia/Lymphoma (ETP-ALL).
    Tariq H; Shetty S
    Turk J Haematol; 2023 Aug; 40(3):227-229. PubMed ID: 37431282
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.