These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 26822628)

  • 21. Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease.
    Famulla K; Sass P; Malik I; Akopian T; Kandror O; Alber M; Hinzen B; Ruebsamen-Schaeff H; Kalscheuer R; Goldberg AL; Brötz-Oesterhelt H
    Mol Microbiol; 2016 Jul; 101(2):194-209. PubMed ID: 26919556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insight into Structure-Function Relationships and Inhibition of the Fatty Acyl-AMP Ligase (FadD32) Orthologs from Mycobacteria.
    Guillet V; Galandrin S; Maveyraud L; Ladevèze S; Mariaule V; Bon C; Eynard N; Daffé M; Marrakchi H; Mourey L
    J Biol Chem; 2016 Apr; 291(15):7973-89. PubMed ID: 26900152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide characterization of monomeric transcriptional regulators in Mycobacterium tuberculosis.
    Feng L; Chen Z; Wang Z; Hu Y; Chen S
    Microbiology (Reading); 2016 May; 162(5):889-897. PubMed ID: 26887897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks.
    Flentie K; Garner AL; Stallings CL
    J Bacteriol; 2016 May; 198(9):1360-73. PubMed ID: 26883824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elongation of the Poly-γ-glutamate Tail of F420 Requires Both Domains of the F420:γ-Glutamyl Ligase (FbiB) of Mycobacterium tuberculosis.
    Bashiri G; Rehan AM; Sreebhavan S; Baker HM; Baker EN; Squire CJ
    J Biol Chem; 2016 Mar; 291(13):6882-94. PubMed ID: 26861878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis.
    Ho NA; Dawes SS; Crowe AM; Casabon I; Gao C; Kendall SL; Baker EN; Eltis LD; Lott JS
    J Biol Chem; 2016 Apr; 291(14):7256-66. PubMed ID: 26858250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resistance related metabolic pathways for drug target identification in Mycobacterium tuberculosis.
    Cloete R; Oppon E; Murungi E; Schubert WD; Christoffels A
    BMC Bioinformatics; 2016 Feb; 17():75. PubMed ID: 26856535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Lipoyl Synthase from Mycobacterium tuberculosis.
    Lanz ND; Lee KH; Horstmann AK; Pandelia ME; Cicchillo RM; Krebs C; Booker SJ
    Biochemistry; 2016 Mar; 55(9):1372-83. PubMed ID: 26841001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viability, morphology, and proteome of Mycobacterium smegmatis MSMEG_0319 knockout strain.
    Sha S; Shi X; Xu L; Wen J; Xin Y; Ma Y
    Proteomics; 2016 Apr; 16(7):1090-9. PubMed ID: 26833451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cpn60.1 (GroEL1) Contributes to Mycobacterial Crabtree Effect: Implications for Biofilm Formation.
    Zeng S; Constant P; Yang D; Baulard A; Lefèvre P; Daffé M; Wattiez R; Fontaine V
    Front Microbiol; 2019; 10():1149. PubMed ID: 31244785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of thioredoxin proteins in
    Sugandhi S; Rajmane V; Taunk K; Jadhav S; Nema V; Rapole S; Mande SC
    Biochem Biophys Rep; 2023 Sep; 35():101512. PubMed ID: 37521372
    [No Abstract]   [Full Text] [Related]  

  • 32. The
    Zeng S; Yang D; Rens C; Fontaine V
    Microorganisms; 2023 Jan; 11(2):. PubMed ID: 36838252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct Interaction of Polar Scaffolding Protein Wag31 with Nucleoid-Associated Protein Rv3852 Regulates Its Polar Localization.
    Garg R; Anand C; Ganguly S; Rao S; Verma R; Nagaraja V
    Cells; 2021 Jun; 10(6):. PubMed ID: 34203111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic Insight into the Symbiotic Relationship of
    Liu H; Chen H; Ding G; Li K; Wang Y
    Life (Basel); 2021 Feb; 11(2):. PubMed ID: 33672434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peripheral blood bovine lymphocytes and MAP show distinctly different proteome changes and immune pathways in host-pathogen interaction.
    Kleinwort KJH; Hauck SM; Degroote RL; Scholz AM; Hölzel C; Maertlbauer EP; Deeg C
    PeerJ; 2019; 7():e8130. PubMed ID: 31788366
    [No Abstract]   [Full Text] [Related]  

  • 36. Multiple transcription factors co-regulate the Mycobacterium tuberculosis adaptation response to vitamin C.
    Nandi M; Sikri K; Chaudhary N; Mande SC; Sharma RD; Tyagi JS
    BMC Genomics; 2019 Nov; 20(1):887. PubMed ID: 31752669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adhesion molecules facilitate host-pathogen interaction & mediate
    Bisht D; Meena LS
    Indian J Med Res; 2019 Jul; 150(1):23-32. PubMed ID: 31571626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Glimpse Into the Structure and Function of Atypical Type I Chaperonins.
    Ansari MY; Mande SC
    Front Mol Biosci; 2018; 5():31. PubMed ID: 29696145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation of the secretome of Echinostoma caproni may contribute to parasite survival in a Th1 milieu.
    Cortés A; Muñoz-Antolí C; Álvarez-Izquierdo M; Sotillo J; Esteban JG; Toledo R
    Parasitol Res; 2018 Apr; 117(4):947-957. PubMed ID: 29435719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis.
    Sharma A; Rustad T; Mahajan G; Kumar A; Rao KV; Banerjee S; Sherman DR; Mande SC
    Tuberculosis (Edinb); 2016 Mar; 97():137-46. PubMed ID: 26822628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.