These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 26822724)

  • 1. Evidence of viscoplastic behavior of exfoliated graphite nanofluids.
    Hermida-Merino C; Pérez-Rodríguez M; Piñeiro MM; Pastoriza-Gallego MJ
    Soft Matter; 2016 Feb; 12(8):2264-75. PubMed ID: 26822724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids.
    Pastoriza-Gallego MJ; Lugo L; Legido JL; Piñeiro MM
    Nanoscale Res Lett; 2011 Oct; 6(1):560. PubMed ID: 22027018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Six Carbon-Based Nanomaterials on the Rheological Properties of Nanofluids.
    Vallejo JP; Żyła G; Fernández-Seara J; Lugo L
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30682791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological and Thermal Conductivity Study of Two-Dimensional Molybdenum Disulfide-Based Ethylene Glycol Nanofluids for Heat Transfer Applications.
    Shah SNA; Shahabuddin S; Khalid M; Mohd Sabri MF; Mohd Salleh MF; Muhamad Sarih N; Rahman S
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations: steady shear flow behavior.
    Park EK; Song KW
    Arch Pharm Res; 2010 Jan; 33(1):141-50. PubMed ID: 20191355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological behavior of carbon nanotube and graphite nanoparticle dispersions.
    Yang Y; Grulke EA; Zhang ZG; Wu G
    J Nanosci Nanotechnol; 2005 Apr; 5(4):571-9. PubMed ID: 16004121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile.
    Cabaleiro D; Colla L; Barison S; Lugo L; Fedele L; Bobbo S
    Nanoscale Res Lett; 2017 Dec; 12(1):53. PubMed ID: 28102524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic viscosity measurement in non-Newtonian graphite nanofluids.
    Duan F; Wong TF; Crivoi A
    Nanoscale Res Lett; 2012 Jul; 7(1):360. PubMed ID: 22747975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids.
    Cabaleiro D; Pastoriza-Gallego MJ; Gracia-Fernández C; Piñeiro MM; Lugo L
    Nanoscale Res Lett; 2013 Jun; 8(1):286. PubMed ID: 23763850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on Rheological Properties of Water-Based Novel Ternary Hybrid Nanofluids Using Experimental and Taguchi Method.
    Mohammed Zayan J; Rasheed AK; John A; Khalid M; Ismail AF; Aabid A; Baig M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure.
    Wang B; Hao J; Li H
    Dalton Trans; 2013 Apr; 42(16):5866-73. PubMed ID: 23455511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the rheological behaviour of human blood using a controlled stress rheometer.
    Alves MM; Rocha C; Gonçalves MP
    Clin Hemorheol Microcirc; 2013; 53(4):369-86. PubMed ID: 23579279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady flow and viscoelastic properties of lubricating grease containing various thickener concentrations.
    Yeong SK; Luckham PF; Tadros TF
    J Colloid Interface Sci; 2004 Jun; 274(1):285-93. PubMed ID: 15120303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic properties of nanocrystalline films of semiconducting chalcogenides at liquid/liquid interface.
    Krishnaswamy R; Kalyanikutty KP; Biswas K; Sood AK; Rao CN
    Langmuir; 2009 Sep; 25(18):10954-61. PubMed ID: 19678615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Transport Properties of Glycol-Based NanoFluids Derived from Surface Functionalized Graphene.
    Saeed E; Piñeiro MM; Hermida-Merino C; Pastoriza-Gallego MJ
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30759883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring Nanofluid Thermophysical Profile through Graphene Nanoplatelets Surface Functionalization.
    Hermida-Merino C; Pérez-Rodríguez M; Pereiro AB; Piñeiro MM; Pastoriza-Gallego MJ
    ACS Omega; 2018 Jan; 3(1):744-752. PubMed ID: 31457928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis.
    Towler BW; Rupp CJ; Cunningham AB; Stoodley P
    Biofouling; 2003 Oct; 19(5):279-85. PubMed ID: 14650082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-healing fish gelatin/sodium montmorillonite biohybrid coacervates: structural and rheological characterization.
    Qazvini NT; Bolisetty S; Adamcik J; Mezzenga R
    Biomacromolecules; 2012 Jul; 13(7):2136-47. PubMed ID: 22642874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis and strain hardening in the creep response of a polyaniline ER fluid.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2008 Sep; 325(1):122-9. PubMed ID: 18539292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates.
    Johnson TP; Socrate S; Boyce MC
    Acta Biomater; 2010 Oct; 6(10):4073-80. PubMed ID: 20417735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.