BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26824019)

  • 1. Influence of translation factor activities on start site selection in six different mRNAs.
    Barth-Baus D; Bhasker CR; Zoll W; Merrick WC
    Translation (Austin); 2013; 1(1):e24419. PubMed ID: 26824019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human eIF5 and eIF1A Compete for Binding to eIF5B.
    Lin KY; Nag N; Pestova TV; Marintchev A
    Biochemistry; 2018 Oct; 57(40):5910-5920. PubMed ID: 30211544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection.
    Valásek L; Nielsen KH; Zhang F; Fekete CA; Hinnebusch AG
    Mol Cell Biol; 2004 Nov; 24(21):9437-55. PubMed ID: 15485912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5.
    Loughran G; Sachs MS; Atkins JF; Ivanov IP
    Nucleic Acids Res; 2012 Apr; 40(7):2898-906. PubMed ID: 22156057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication between eukaryotic translation initiation factors 5 and 1A within the ribosomal pre-initiation complex plays a role in start site selection.
    Maag D; Algire MA; Lorsch JR
    J Mol Biol; 2006 Feb; 356(3):724-37. PubMed ID: 16380131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection.
    Loughran G; Firth AE; Atkins JF; Ivanov IP
    PLoS One; 2018; 13(2):e0192648. PubMed ID: 29470543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo.
    Asano K; Clayton J; Shalev A; Hinnebusch AG
    Genes Dev; 2000 Oct; 14(19):2534-46. PubMed ID: 11018020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo.
    Cheung YN; Maag D; Mitchell SF; Fekete CA; Algire MA; Takacs JE; Shirokikh N; Pestova T; Lorsch JR; Hinnebusch AG
    Genes Dev; 2007 May; 21(10):1217-30. PubMed ID: 17504939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles of start codon recognition in eukaryotic translation initiation.
    Lind C; Åqvist J
    Nucleic Acids Res; 2016 Sep; 44(17):8425-32. PubMed ID: 27280974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionarily conserved inhibitory uORFs sensitize
    Ivanov IP; Saba JA; Fan CM; Wang J; Firth AE; Cao C; Green R; Dever TE
    Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35217614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation.
    Majumdar R; Maitra U
    EMBO J; 2005 Nov; 24(21):3737-46. PubMed ID: 16222335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The scanning mechanism of eukaryotic translation initiation.
    Hinnebusch AG
    Annu Rev Biochem; 2014; 83():779-812. PubMed ID: 24499181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP.
    Unbehaun A; Borukhov SI; Hellen CU; Pestova TV
    Genes Dev; 2004 Dec; 18(24):3078-93. PubMed ID: 15601822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ABC50 mutants modify translation start codon selection.
    Stewart JD; Cowan JL; Perry LS; Coldwell MJ; Proud CG
    Biochem J; 2015 Apr; 467(2):217-29. PubMed ID: 25597744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer-Associated Eukaryotic Translation Initiation Factor 1A Mutants Impair Rps3 and Rps10 Binding and Enhance Scanning of Cell Cycle Genes.
    Sehrawat U; Koning F; Ashkenazi S; Stelzer G; Leshkowitz D; Dikstein R
    Mol Cell Biol; 2019 Feb; 39(3):. PubMed ID: 30420357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation.
    Asano K; Shalev A; Phan L; Nielsen K; Clayton J; Valásek L; Donahue TF; Hinnebusch AG
    EMBO J; 2001 May; 20(9):2326-37. PubMed ID: 11331597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection.
    Fekete CA; Mitchell SF; Cherkasova VA; Applefield D; Algire MA; Maag D; Saini AK; Lorsch JR; Hinnebusch AG
    EMBO J; 2007 Mar; 26(6):1602-14. PubMed ID: 17332751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. eIF1 Loop 2 interactions with Met-tRNA
    Thakur A; Hinnebusch AG
    Proc Natl Acad Sci U S A; 2018 May; 115(18):E4159-E4168. PubMed ID: 29666249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of the aphthovirus RNA region located between the two functional AUGs in start codon selection.
    López de Quinto S; Martínez-Salas E
    Virology; 1999 Mar; 255(2):324-36. PubMed ID: 10069958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrangements of nucleotides flanking the start codon in the IRES of the hepatitis C virus in the IRES binary complex with the human 40S ribosomal subunit.
    Babaylova ES; Graifer DM; Malygin AA; Karpova GG
    Biochimie; 2018 May; 148():72-79. PubMed ID: 29501734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.