BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26824190)

  • 1. Spider Silk Peptide Is a Compact, Linear Nanospring Ideal for Intracellular Tension Sensing.
    Brenner MD; Zhou R; Conway DE; Lanzano L; Gratton E; Schwartz MA; Ha T
    Nano Lett; 2016 Mar; 16(3):2096-102. PubMed ID: 26824190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular nanosprings in spider capture-silk threads.
    Becker N; Oroudjev E; Mutz S; Cleveland JP; Hansma PK; Hayashi CY; Makarov DE; Hansma HG
    Nat Mater; 2003 Apr; 2(4):278-83. PubMed ID: 12690403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical chain model of spider capture silk elasticity.
    Zhou H; Zhang Y
    Phys Rev Lett; 2005 Jan; 94(2):028104. PubMed ID: 15698235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Forces Acting on Single T-Cell Receptors.
    Schrangl L; Göhring J; Kellner F; Huppa JB; Schütz GJ
    Methods Mol Biol; 2024; 2800():147-165. PubMed ID: 38709483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of superior spider silk: from nanostructure to mechanical properties.
    Du N; Liu XY; Narayanan J; Li L; Lim ML; Li D
    Biophys J; 2006 Dec; 91(12):4528-35. PubMed ID: 16950851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber formation of a synthetic spider peptide derived from Nephila clavata.
    Hidaka Y; Kontani K; Taniguchi R; Saiki M; Yokoi S; Yukuhiro K; Yamaguchi H; Miyazawa M
    Biopolymers; 2011; 96(2):222-7. PubMed ID: 20564008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forcing a connection: impacts of single-molecule force spectroscopy on in vivo tension sensing.
    Brenner MD; Zhou R; Ha T
    Biopolymers; 2011 May; 95(5):332-44. PubMed ID: 21267988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spider silk proteome provides insight into the structural characterization of Nephila clavipes flagelliform spidroin.
    Dos Santos-Pinto JRA; Arcuri HA; Esteves FG; Palma MS; Lubec G
    Sci Rep; 2018 Oct; 8(1):14674. PubMed ID: 30279551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy.
    Oroudjev E; Soares J; Arcdiacono S; Thompson JB; Fossey SA; Hansma HG
    Proc Natl Acad Sci U S A; 2002 Apr; 99 Suppl 2(Suppl 2):6460-5. PubMed ID: 11959907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of proline in the elastic mechanism of hydrated spider silks.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1948-57. PubMed ID: 18515725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating piconewton forces in cells by FRET-based molecular force microscopy.
    Freikamp A; Mehlich A; Klingner C; Grashoff C
    J Struct Biol; 2017 Jan; 197(1):37-42. PubMed ID: 26980477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmented nanofibrils of spiral silk in Uloborus walckenaerius spider.
    Huang Z; Liao X; Yin G; Kang Y; Yao Y
    J Phys Chem B; 2009 Apr; 113(15):5092-7. PubMed ID: 19317392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Mechanical Roles for the C-Terminal Nonrepetitive Domain Become Apparent in Recombinant Spider Aciniform Silk.
    Xu L; Lefèvre T; Orrell KE; Meng Q; Auger M; Liu XQ; Rainey JK
    Biomacromolecules; 2017 Nov; 18(11):3678-3686. PubMed ID: 28934550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of recombinantly produced spider flagelliform silk domains.
    Heim M; Ackerschott CB; Scheibel T
    J Struct Biol; 2010 May; 170(2):420-5. PubMed ID: 20045468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.
    Agnarsson I; Kuntner M; Blackledge TA
    PLoS One; 2010 Sep; 5(9):e11234. PubMed ID: 20856804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.
    Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):542-52. PubMed ID: 18651614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces.
    Horinek D; Serr A; Geisler M; Pirzer T; Slotta U; Lud SQ; Garrido JA; Scheibel T; Hugel T; Netz RR
    Proc Natl Acad Sci U S A; 2008 Feb; 105(8):2842-7. PubMed ID: 18287007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism of spider silk elasticity.
    Dong Z; Lewis RV; Middaugh CR
    Arch Biochem Biophys; 1991 Jan; 284(1):53-7. PubMed ID: 1989503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation.
    Vehoff T; Glisović A; Schollmeyer H; Zippelius A; Salditt T
    Biophys J; 2007 Dec; 93(12):4425-32. PubMed ID: 17766337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.