These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26824296)

  • 1. Sequence-Specific Recognition of MicroRNAs and Other Short Nucleic Acids with Solid-State Nanopores.
    Zahid OK; Wang F; Ruzicka JA; Taylor EW; Hall AR
    Nano Lett; 2016 Mar; 16(3):2033-9. PubMed ID: 26824296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore.
    Tian K; He Z; Wang Y; Chen SJ; Gu LQ
    ACS Nano; 2013 May; 7(5):3962-9. PubMed ID: 23550815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective detection and quantification of modified DNA with solid-state nanopores.
    Carlsen AT; Zahid OK; Ruzicka JA; Taylor EW; Hall AR
    Nano Lett; 2014 Oct; 14(10):5488-92. PubMed ID: 24821614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput optical sensing of nucleic acids in a nanopore array.
    Huang S; Romero-Ruiz M; Castell OK; Bayley H; Wallace MI
    Nat Nanotechnol; 2015 Nov; 10(11):986-91. PubMed ID: 26322943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central Limit Theorem-Based Analysis Method for MicroRNA Detection with Solid-State Nanopores.
    Yan H; Weng T; Zhu L; Tang P; Zhang Z; Zhang P; Wang D; Lu Z
    ACS Appl Bio Mater; 2021 Aug; 4(8):6394-6403. PubMed ID: 35006879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore-Based Selective Discrimination of MicroRNAs with Single-Nucleotide Difference Using Locked Nucleic Acid-Modified Probes.
    Xi D; Shang J; Fan E; You J; Zhang S; Wang H
    Anal Chem; 2016 Nov; 88(21):10540-10546. PubMed ID: 27734673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and Single-Molecule Characterization of a Sequence-Selective Covalent Cross-Link Mediated by Mechlorethamine at a C-C Mismatch in Duplex DNA for Discrimination of a Disease-Relevant Single Nucleotide Polymorphism.
    Shi R; Nejad MI; Zhang X; Gu LQ; Gates KS
    Bioconjug Chem; 2018 Nov; 29(11):3810-3816. PubMed ID: 30350578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors.
    Wanunu M; Dadosh T; Ray V; Jin J; McReynolds L; Drndić M
    Nat Nanotechnol; 2010 Nov; 5(11):807-14. PubMed ID: 20972437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programming nanopore ion flow for encoded multiplex microRNA detection.
    Zhang X; Wang Y; Fricke BL; Gu LQ
    ACS Nano; 2014 Apr; 8(4):3444-50. PubMed ID: 24654890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Single Molecule Nanopore Sensing of microRNA Using PNA Functionalized Magnetic Core-Shell Fe
    Wang H; Tang H; Yang C; Li Y
    Anal Chem; 2019 Jun; 91(12):7965-7970. PubMed ID: 31132236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital counting of nucleic acid targets using solid-state nanopores.
    Beamish E; Tabard-Cossa V; Godin M
    Nanoscale; 2020 Sep; 12(34):17833-17840. PubMed ID: 32832949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple strategy for the fabrication of gold-modified single nanopores and its application for miRNA sensing.
    Yang C; Wang H; Tang H; Zhao D; Li Y
    Chem Commun (Camb); 2019 Aug; 55(69):10288-10291. PubMed ID: 31396601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "DNA-Dressed NAnopore" for complementary sequence detection.
    Mussi V; Fanzio P; Repetto L; Firpo G; Stigliani S; Tonini GP; Valbusa U
    Biosens Bioelectron; 2011 Nov; 29(1):125-31. PubMed ID: 21868212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores.
    Karau P; Tabard-Cossa V
    ACS Sens; 2018 Jul; 3(7):1308-1315. PubMed ID: 29874054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore single-molecule dielectrophoretic detection of cancer-derived microRNA biomarkers.
    Tian K; Gu LQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6821-4. PubMed ID: 24111311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic Current-Based Mapping of Short Sequence Motifs in Single DNA Molecules Using Solid-State Nanopores.
    Chen K; Juhasz M; Gularek F; Weinhold E; Tian Y; Keyser UF; Bell NAW
    Nano Lett; 2017 Sep; 17(9):5199-5205. PubMed ID: 28829136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed discrimination of microRNA single nucleotide variants through triplex molecular beacon sensors.
    Wu X; Guo B; Sheng Y; Zhang Y; Wang J; Peng S; Liu L; Wu HC
    Chem Commun (Camb); 2018 Jul; 54(55):7673-7676. PubMed ID: 29938280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule, hybridization-based strategies for short nucleic acids detection and recognition with nanopores.
    Luchian T; Mereuta L; Park Y; Asandei A; Schiopu I
    Proteomics; 2022 Mar; 22(5-6):e2100046. PubMed ID: 34275186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.