These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 26824432)

  • 41. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus.
    Karvelis T; Gasiunas G; Miksys A; Barrangou R; Horvath P; Siksnys V
    RNA Biol; 2013 May; 10(5):841-51. PubMed ID: 23535272
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity.
    Yin H; Song CQ; Suresh S; Kwan SY; Wu Q; Walsh S; Ding J; Bogorad RL; Zhu LJ; Wolfe SA; Koteliansky V; Xue W; Langer R; Anderson DG
    Nat Chem Biol; 2018 Mar; 14(3):311-316. PubMed ID: 29377001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance.
    Babu K; Amrani N; Jiang W; Yogesha SD; Nguyen R; Qin PZ; Rajan R
    Biochemistry; 2019 Apr; 58(14):1905-1917. PubMed ID: 30916546
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential pitfalls of CRISPR/Cas9-mediated genome editing.
    Peng R; Lin G; Li J
    FEBS J; 2016 Apr; 283(7):1218-31. PubMed ID: 26535798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
    Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E
    Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems.
    Yamada M; Watanabe Y; Gootenberg JS; Hirano H; Ran FA; Nakane T; Ishitani R; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2017 Mar; 65(6):1109-1121.e3. PubMed ID: 28306506
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frankenstein Cas9: engineering improved gene editing systems.
    Vos PD; Filipovska A; Rackham O
    Biochem Soc Trans; 2022 Oct; 50(5):1505-1516. PubMed ID: 36305591
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding.
    Boyle EA; Andreasson JOL; Chircus LM; Sternberg SH; Wu MJ; Guegler CK; Doudna JA; Greenleaf WJ
    Proc Natl Acad Sci U S A; 2017 May; 114(21):5461-5466. PubMed ID: 28495970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9.
    Tsui TKM; Hand TH; Duboy EC; Li H
    ACS Synth Biol; 2017 Jun; 6(6):1103-1113. PubMed ID: 28277645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.
    Vazquez Reyes C; Tangprasertchai NS; Yogesha SD; Nguyen RH; Zhang X; Rajan R; Qin PZ
    Cell Biochem Biophys; 2017 Jun; 75(2):203-210. PubMed ID: 27342128
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes.
    Kumar R; Tiwari K; Saudagar P
    Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single molecule methods for studying CRISPR Cas9-induced DNA unwinding.
    Okafor IC; Choi J; Ha T
    Methods; 2022 Aug; 204():319-326. PubMed ID: 34767923
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery.
    Lin S; Staahl BT; Alla RK; Doudna JA
    Elife; 2014 Dec; 3():e04766. PubMed ID: 25497837
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expanding the Biologist's Toolkit with CRISPR-Cas9.
    Sternberg SH; Doudna JA
    Mol Cell; 2015 May; 58(4):568-74. PubMed ID: 26000842
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design and Evaluation of Guide RNA Transcripts with a 3'-Terminal HDV Ribozyme to Enhance CRISPR-Based Gene Inactivation.
    Berkhout B; Gao Z; Herrera-Carrillo E
    Methods Mol Biol; 2021; 2167():205-224. PubMed ID: 32712922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rational guide RNA engineering for small-molecule control of CRISPR/Cas9 and gene editing.
    Liu X; Xiong W; Qi Q; Zhang Y; Ji H; Cui S; An J; Sun X; Yin H; Tian T; Zhou X
    Nucleic Acids Res; 2022 May; 50(8):4769-4783. PubMed ID: 35446403
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanistic insights into the R-loop formation and cleavage in CRISPR-Cas12i1.
    Zhang B; Luo D; Li Y; Perčulija V; Chen J; Lin J; Ye Y; Ouyang S
    Nat Commun; 2021 Jun; 12(1):3476. PubMed ID: 34108490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.