These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 26824583)
1. Indirect decompression and vertebral body endplate strength after lateral interbody spacer impaction: cadaveric and foam-block models. Kwon AJ; Hunter WD; Moldavsky M; Salloum K; Bucklen B J Neurosurg Spine; 2016 May; 24(5):727-33. PubMed ID: 26824583 [TBL] [Abstract][Full Text] [Related]
2. [An improved vertebral body replacement for the thoracolumbar spine. A biomechanical in vitro test on human lumbar vertebral bodies]. Reinhold M; Schmölz W; Canto F; Krappinger D; Blauth M; Knop C Unfallchirurg; 2007 Apr; 110(4):327-33. PubMed ID: 17211598 [TBL] [Abstract][Full Text] [Related]
4. Additional sagittal correction can be obtained when using an expandable titanium interbody device in lumbar Smith-Peterson osteotomies: a biomechanical study. Qandah NA; Klocke NF; Synkowski JJ; Chinthakunta SR; Hussain MM; Salloum KG; Marvin EA; Bucklen BS Spine J; 2015 Mar; 15(3):506-13. PubMed ID: 25315134 [TBL] [Abstract][Full Text] [Related]
5. Total disc replacement arthroplasty using the AcroFlex lumbar disc: a non-human primate model. Cunningham BW; Lowery GL; Serhan HA; Dmitriev AE; Orbegoso CM; McAfee PC; Fraser RD; Ross RE; Kulkarni SS Eur Spine J; 2002 Oct; 11 Suppl 2(Suppl 2):S115-23. PubMed ID: 12384732 [TBL] [Abstract][Full Text] [Related]
6. In vitro evaluation of a lateral expandable cage and its comparison with a static device for lumbar interbody fusion: a biomechanical investigation. Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Laun J; Vrionis FD J Neurosurg Spine; 2014 Apr; 20(4):387-95. PubMed ID: 24484306 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Niosi CA; Zhu QA; Wilson DC; Keynan O; Wilson DR; Oxland TR Eur Spine J; 2006 Jun; 15(6):913-22. PubMed ID: 16217663 [TBL] [Abstract][Full Text] [Related]
8. [Mid-term results of 360-degree lumbar spondylodesis with the use of a tantalum implant for disc replacement]. Matejka J; Zeman J; Belatka J Acta Chir Orthop Traumatol Cech; 2009 Oct; 76(5):388-93. PubMed ID: 19912702 [TBL] [Abstract][Full Text] [Related]
9. Relaxation response of lumbar segments undergoing disc-space distraction: implications to the stability of anterior lumbar interbody implants. Havey RM; Voronov LI; Tsitsopoulos PP; Carandang G; Ghanayem AJ; Lorenz MA; Zindrick MR; Patwardhan AG Spine (Phila Pa 1976); 2012 Apr; 37(9):733-40. PubMed ID: 21912319 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Chung SK; Kim YE; Wang KC Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003 [TBL] [Abstract][Full Text] [Related]
11. Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion. Barsa P; Suchomel P Eur Spine J; 2007 Sep; 16(9):1395-400. PubMed ID: 17221174 [TBL] [Abstract][Full Text] [Related]
12. Clinical and radiographic analysis of expandable versus static lateral lumbar interbody fusion devices with two-year follow-up. Frisch RF; Luna IY; Brooks DM; Joshua G; O'Brien JR J Spine Surg; 2018 Mar; 4(1):62-71. PubMed ID: 29732424 [TBL] [Abstract][Full Text] [Related]
13. Correlation of cervical endplate strength with CT measured subchondral bone density. Ordway NR; Lu YM; Zhang X; Cheng CC; Fang H; Fayyazi AH Eur Spine J; 2007 Dec; 16(12):2104-9. PubMed ID: 17712574 [TBL] [Abstract][Full Text] [Related]
14. The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence. Mohammad-Shahi MH; Nikolaou VS; Giannitsios D; Ouellet J; Jarzem PF J Spinal Disord Tech; 2013 Jul; 26(5):268-73. PubMed ID: 22228211 [TBL] [Abstract][Full Text] [Related]
15. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. Marchi L; Abdala N; Oliveira L; Amaral R; Coutinho E; Pimenta L J Neurosurg Spine; 2013 Jul; 19(1):110-8. PubMed ID: 23662890 [TBL] [Abstract][Full Text] [Related]
16. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Lim TH; Kwon H; Jeon CH; Kim JG; Sokolowski M; Natarajan R; An HS; Andersson GB Spine (Phila Pa 1976); 2001 Apr; 26(8):951-6. PubMed ID: 11317120 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model. Mantell M; Cyriac M; Haines CM; Gudipally M; O'Brien JR J Neurosurg Spine; 2016 Jan; 24(1):32-8. PubMed ID: 26384133 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical effects of cage positions and facet fixation on initial stability of the anterior lumbar interbody fusion motion segment. Hueng DY; Chung TT; Chuang WH; Hsu CP; Chou KN; Lin SC Spine (Phila Pa 1976); 2014 Jun; 39(13):E770-6. PubMed ID: 24732834 [TBL] [Abstract][Full Text] [Related]
20. Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Dolan P; Luo J; Pollintine P; Landham PR; Stefanakis M; Adams MA Spine (Phila Pa 1976); 2013 Aug; 38(17):1473-81. PubMed ID: 23486408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]