BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26824616)

  • 1. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.
    Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T
    J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithium-Ion Batteries: First-Principles DFT Modeling.
    Park JH; Liu T; Kim KC; Lee SW; Jang SS
    ChemSusChem; 2017 Apr; 10(7):1584-1591. PubMed ID: 28199064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrenetetrone Derivatives Tailored by Nitrogen Dopants for High-Potential Cathodes in Lithium-Ion Batteries.
    Go CY; Jeong GS; Kim KC
    iScience; 2019 Nov; 21():206-216. PubMed ID: 31671332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries.
    Lee DK; Go CY; Kim KC
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31972-31979. PubMed ID: 31393115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretic calculation for understanding the oxidation process of 1,4-dimethoxybenzene-based compounds as redox shuttles for overcharge protection of lithium ion batteries.
    Li T; Xing L; Li W; Peng B; Xu M; Gu F; Hu S
    J Phys Chem A; 2011 May; 115(19):4988-94. PubMed ID: 21517049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials.
    Zhao LB; Gao ST; He R; Shen W; Li M
    ChemSusChem; 2018 Apr; 11(7):1215-1222. PubMed ID: 29380541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory.
    Bachman JE; Curtiss LA; Assary RS
    J Phys Chem A; 2014 Sep; 118(38):8852-60. PubMed ID: 25159500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Water on Quinone Redox Mediators in Nonaqueous Li-O
    Liu T; Frith JT; Kim G; Kerber RN; Dubouis N; Shao Y; Liu Z; Magusin PCMM; Casford MTL; Garcia-Araez N; Grey CP
    J Am Chem Soc; 2018 Jan; 140(4):1428-1437. PubMed ID: 29345915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Free Energies of Solvation and Electronic Structures of Lithium-Ion Battery Electrolytes.
    Shakourian-Fard M; Kamath G; Sankaranarayanan SK
    Chemphyschem; 2016 Sep; 17(18):2916-30. PubMed ID: 27257715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Understanding of the Redox Properties of Fluoranil Derivatives for Cathodes in Sodium-Ion Batteries.
    Jung KH; Jeong GS; Joo JB; Kim KC
    ChemSusChem; 2019 Nov; 12(22):4968-4975. PubMed ID: 31487108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Electron Redox Enabled Dithiocarboxylate Electrode for Superior Lithium Storage Performance.
    Wang J; Zhao H; Xu L; Yang Y; He G; Du Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35469-35476. PubMed ID: 30252431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure-electrochemical property relationship of quinone electrodes for lithium-ion batteries.
    Miao L; Liu L; Shang Z; Li Y; Lu Y; Cheng F; Chen J
    Phys Chem Chem Phys; 2018 May; 20(19):13478-13484. PubMed ID: 29726879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights on Redox Properties of Sumanene Derivatives for High-Performance Organic Cathodes.
    Jung KH; Kim KC
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8333-8341. PubMed ID: 31977171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure and energy decomposition analyses as a tool to interpret the redox potential ranking of naphtho-, biphenyl- and biphenylene-quinone isomers.
    Tomerini D; Politano O; Gatti C; Frayret C
    Phys Chem Chem Phys; 2016 Sep; 18(38):26651-26660. PubMed ID: 27711452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z; Bertolini S; Balbuena PB; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach.
    Kim S; Kim KC; Lee SW; Jang SS
    Phys Chem Chem Phys; 2016 Jul; 18(30):20600-6. PubMed ID: 27412373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.