These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26824616)

  • 21. DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries.
    Ramos-Sanchez G; Callejas-Tovar A; Scanlon LG; Balbuena PB
    Phys Chem Chem Phys; 2014 Jan; 16(2):743-52. PubMed ID: 24270502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries.
    Danchovski Y; Rasheev H; Stoyanova R; Tadjer A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of second-order nonlinear optical response in boron nitride nanocone: Li-doped effect.
    Wang WY; Ma NN; Wang CH; Zhang MY; Sun SL; Qiu YQ
    J Mol Graph Model; 2014 Mar; 48():28-35. PubMed ID: 24366003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Implicit Solvent in Ab Initio Electrochemical Modeling: Investigating Li⁺/Li Electrochemistry at a Li/Solvent Interface.
    Lespes N; Filhol JS
    J Chem Theory Comput; 2015 Jul; 11(7):3375-82. PubMed ID: 26575771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles.
    Dixit M; Kosa M; Lavi OS; Markovsky B; Aurbach D; Major DT
    Phys Chem Chem Phys; 2016 Mar; 18(9):6799-812. PubMed ID: 26878345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental and Computational Analysis of the Solvent-Dependent O2/Li(+)-O2(-) Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries.
    Kwabi DG; Bryantsev VS; Batcho TP; Itkis DM; Thompson CV; Shao-Horn Y
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3129-34. PubMed ID: 26822277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system.
    Koh W; Moon HS; Lee SG; Choi JI; Jang SS
    Chemphyschem; 2015 Mar; 16(4):789-95. PubMed ID: 25536921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries.
    Allam O; Cho BW; Kim KC; Jang SS
    RSC Adv; 2018 Nov; 8(69):39414-39420. PubMed ID: 35558035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First-principles analysis of defect-mediated Li adsorption on graphene.
    Yildirim H; Kinaci A; Zhao ZJ; Chan MK; Greeley JP
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21141-50. PubMed ID: 25394787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure.
    Nakayama M; Kaneko M; Wakihara M
    Phys Chem Chem Phys; 2012 Oct; 14(40):13963-70. PubMed ID: 22986640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-Ion Battery Applications.
    Sood P; Kim KC; Jang SS
    Chemphyschem; 2018 Mar; 19(6):753-758. PubMed ID: 29216411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of lead quinone cathode materials for Li-ion batteries.
    Zhou X; Khetan A; Zheng J; Huijben M; Janssen RAJ; Er S
    Digit Discov; 2023 Aug; 2(4):1016-1025. PubMed ID: 38013813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Playing with isomerism and N substitution in pentalenedione derivatives for organic electrode batteries: how high are the stakes?
    Tomerini D; Gatti C; Frayret C
    Phys Chem Chem Phys; 2016 Jan; 18(4):2442-8. PubMed ID: 26701642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of lithium on the electronic properties of porous Ge as anode material for batteries.
    Sosa AN; González I; Trejo A; Miranda Á; Salazar F; Cruz-Irisson M
    J Comput Chem; 2020 Dec; 41(31):2653-2662. PubMed ID: 32936470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating bulk Nb2O2F3 for Li-battery electrode applications.
    Araujo RB; Ahuja R
    Phys Chem Chem Phys; 2016 Feb; 18(5):3530-5. PubMed ID: 26751421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orbital-dependent redox potential regulation of quinone derivatives for electrical energy storage.
    Niu Z; Wu H; Lu Y; Xiong S; Zhu X; Zhao Y; Zhang X
    RSC Adv; 2019 Feb; 9(9):5164-5173. PubMed ID: 35514638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.