These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 26824644)
1. Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation. Plach MG; Reisinger B; Sterner R; Merkl R PLoS Genet; 2016 Jan; 12(1):e1005836. PubMed ID: 26824644 [TBL] [Abstract][Full Text] [Related]
2. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)₈ isomerase evolutionary intermediates from a diverse metagenome. Noda-García L; Juárez-Vázquez AL; Ávila-Arcos MC; Verduzco-Castro EA; Montero-Morán G; Gaytán P; Carrillo-Tripp M; Barona-Gómez F BMC Evol Biol; 2015 Jun; 15():107. PubMed ID: 26058375 [TBL] [Abstract][Full Text] [Related]
3. Bisubstrate specificity in histidine/tryptophan biosynthesis isomerase from Mycobacterium tuberculosis by active site metamorphosis. Due AV; Kuper J; Geerlof A; von Kries JP; Wilmanns M Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3554-9. PubMed ID: 21321225 [TBL] [Abstract][Full Text] [Related]
4. Two (betaalpha)(8)-barrel enzymes of histidine and tryptophan biosynthesis have similar reaction mechanisms and common strategies for protecting their labile substrates. Henn-Sax M; Thoma R; Schmidt S; Hennig M; Kirschner K; Sterner R Biochemistry; 2002 Oct; 41(40):12032-42. PubMed ID: 12356303 [TBL] [Abstract][Full Text] [Related]
5. Co-occurrence of analogous enzymes determines evolution of a novel (βα)8-isomerase sub-family after non-conserved mutations in flexible loop. Verduzco-Castro EA; Michalska K; Endres M; Juárez-Vazquez AL; Noda-García L; Chang C; Henry CS; Babnigg G; Joachimiak A; Barona-Gómez F Biochem J; 2016 May; 473(9):1141-52. PubMed ID: 26929404 [TBL] [Abstract][Full Text] [Related]
6. Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer. Noda-García L; Camacho-Zarco AR; Medina-Ruíz S; Gaytán P; Carrillo-Tripp M; Fülöp V; Barona-Gómez F Mol Biol Evol; 2013 Sep; 30(9):2024-34. PubMed ID: 23800623 [TBL] [Abstract][Full Text] [Related]
7. Occurrence of a putative ancient-like isomerase involved in histidine and tryptophan biosynthesis. Barona-Gómez F; Hodgson DA EMBO Rep; 2003 Mar; 4(3):296-300. PubMed ID: 12634849 [TBL] [Abstract][Full Text] [Related]
8. Directed evolution of a (beta alpha)8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Jürgens C; Strom A; Wegener D; Hettwer S; Wilmanns M; Sterner R Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9925-30. PubMed ID: 10944186 [TBL] [Abstract][Full Text] [Related]
9. The evolution of the histidine biosynthetic genes in prokaryotes: a common ancestor for the hisA and hisF genes. Fani R; Liò P; Chiarelli I; Bazzicalupo M J Mol Evol; 1994 May; 38(5):489-95. PubMed ID: 8028028 [TBL] [Abstract][Full Text] [Related]
10. A sugar isomerization reaction established on various (βα)₈-barrel scaffolds is based on substrate-assisted catalysis. Reisinger B; Bocola M; List F; Claren J; Rajendran C; Sterner R Protein Eng Des Sel; 2012 Nov; 25(11):751-60. PubMed ID: 23109729 [TBL] [Abstract][Full Text] [Related]
11. Complex Loop Dynamics Underpin Activity, Specificity, and Evolvability in the (βα) Romero-Rivera A; Corbella M; Parracino A; Patrick WM; Kamerlin SCL JACS Au; 2022 Apr; 2(4):943-960. PubMed ID: 35557756 [TBL] [Abstract][Full Text] [Related]
12. Simulations reveal the key role of Arg15 in the promiscuous activity in the HisA enzyme. Dubey KD; Singh W Org Biomol Chem; 2021 Dec; 19(48):10652-10661. PubMed ID: 34854451 [TBL] [Abstract][Full Text] [Related]
13. Mutational Pathways and Trade-Offs Between HisA and TrpF Functions: Implications for Evolution via Gene Duplication and Divergence. Lundin E; Näsvall J; Andersson DI Front Microbiol; 2020; 11():588235. PubMed ID: 33154742 [TBL] [Abstract][Full Text] [Related]
14. Interconverting the catalytic activities of (betaalpha)(8)-barrel enzymes from different metabolic pathways: sequence requirements and molecular analysis. Leopoldseder S; Claren J; Jürgens C; Sterner R J Mol Biol; 2004 Apr; 337(4):871-9. PubMed ID: 15033357 [TBL] [Abstract][Full Text] [Related]
15. Molecular evolution of the histidine biosynthetic pathway. Fani R; Liò P; Lazcano A J Mol Evol; 1995 Dec; 41(6):760-74. PubMed ID: 8587121 [TBL] [Abstract][Full Text] [Related]
16. Directed evolution of (βα)(8)-barrel enzymes: establishing phosphoribosylanthranilate isomerisation activity on the scaffold of the tryptophan synthase α-subunit. Evran S; Telefoncu A; Sterner R Protein Eng Des Sel; 2012 Jun; 25(6):285-93. PubMed ID: 22490958 [TBL] [Abstract][Full Text] [Related]
17. Structural, kinetic, and evolutionary peculiarities of HISN3, a plant 5'-ProFAR isomerase. Witek W; Imiolczyk B; Ruszkowski M Plant Physiol Biochem; 2024 Oct; 215():109065. PubMed ID: 39186852 [TBL] [Abstract][Full Text] [Related]
18. An evolutionary comparison of Acinetobacter calcoaceticus trpF with trpF genes of several organisms. Ross CM; Kaplan JB; Winkler ME; Nichols BP Mol Biol Evol; 1990 Jan; 7(1):74-81. PubMed ID: 2299982 [TBL] [Abstract][Full Text] [Related]
19. The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case. Fani R; Brilli M; Fondi M; Lió P BMC Evol Biol; 2007 Aug; 7 Suppl 2(Suppl 2):S4. PubMed ID: 17767732 [TBL] [Abstract][Full Text] [Related]
20. Related (βα)8-barrel proteins in histidine and tryptophan biosynthesis: a paradigm to study enzyme evolution. List F; Sterner R; Wilmanns M Chembiochem; 2011 Jul; 12(10):1487-94. PubMed ID: 21656890 [No Abstract] [Full Text] [Related] [Next] [New Search]