These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26824847)
21. Range shifts of overwintering birds depend on habitat type, snow conditions and habitat specialization. Bosco L; Xu Y; Deshpande P; Lehikoinen A Oecologia; 2022 Jul; 199(3):725-736. PubMed ID: 35767049 [TBL] [Abstract][Full Text] [Related]
22. Links between plant species' spatial and temporal responses to a warming climate. Amano T; Freckleton RP; Queenborough SA; Doxford SW; Smithers RJ; Sparks TH; Sutherland WJ Proc Biol Sci; 2014 Mar; 281(1779):20133017. PubMed ID: 24478304 [TBL] [Abstract][Full Text] [Related]
23. Effects of climate and snow depth on Bromus tectorum population dynamics at high elevation. Griffith AB; Loik ME Oecologia; 2010 Nov; 164(3):821-32. PubMed ID: 20740291 [TBL] [Abstract][Full Text] [Related]
24. Life stage, not climate change, explains observed tree range shifts. Máliš F; Kopecký M; Petřík P; Vladovič J; Merganič J; Vida T Glob Chang Biol; 2016 May; 22(5):1904-14. PubMed ID: 26725258 [TBL] [Abstract][Full Text] [Related]
25. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs. Stevens JT; Latimer AM Glob Chang Biol; 2015 Jun; 21(6):2379-93. PubMed ID: 25482316 [TBL] [Abstract][Full Text] [Related]
26. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
27. Effects of climate warming and prolonged snow cover on phenology of the early life history stages of four alpine herbs on the southeastern Tibetan Plateau. Wang G; Baskin CC; Baskin JM; Yang X; Liu G; Ye X; Zhang X; Huang Z Am J Bot; 2018 Jun; 105(6):967-976. PubMed ID: 29927486 [TBL] [Abstract][Full Text] [Related]
28. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Aryal A; Shrestha UB; Ji W; Ale SB; Shrestha S; Ingty T; Maraseni T; Cockfield G; Raubenheimer D Ecol Evol; 2016 Jun; 6(12):4065-75. PubMed ID: 27516864 [TBL] [Abstract][Full Text] [Related]
29. Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Assis J; Berecibar E; Claro B; Alberto F; Reed D; Raimondi P; Serrão EA Sci Rep; 2017 Mar; 7():44348. PubMed ID: 28276501 [TBL] [Abstract][Full Text] [Related]
30. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech. Saltré F; Duputié A; Gaucherel C; Chuine I Glob Chang Biol; 2015 Feb; 21(2):897-910. PubMed ID: 25330385 [TBL] [Abstract][Full Text] [Related]
31. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Anderson JT; Gezon ZJ Glob Chang Biol; 2015 Apr; 21(4):1689-703. PubMed ID: 25470363 [TBL] [Abstract][Full Text] [Related]
32. Alpine species in dynamic insular ecosystems through time: conservation genetics and niche shift estimates of the endemic and vulnerable Viola cheiranthifolia. Rodríguez-Rodríguez P; G Fernández de Castro A; Seguí J; Traveset A; Sosa PA Ann Bot; 2019 Feb; 123(3):505-519. PubMed ID: 30307538 [TBL] [Abstract][Full Text] [Related]
33. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Zanatta F; Engler R; Collart F; Broennimann O; Mateo RG; Papp B; Muñoz J; Baurain D; Guisan A; Vanderpoorten A Nat Commun; 2020 Nov; 11(1):5601. PubMed ID: 33154374 [TBL] [Abstract][Full Text] [Related]
34. Climate change surpasses land-use change in the contracting range boundary of a winter-adapted mammal. Sultaire SM; Pauli JN; Martin KJ; Meyer MW; Notaro M; Zuckerberg B Proc Biol Sci; 2016 Mar; 283(1827):20153104. PubMed ID: 27030410 [TBL] [Abstract][Full Text] [Related]
35. [Contribution of soil fauna to litter decomposition of Abies faxoniana and Rhododendron lapponicum across an alpine timberline ecotone in Western Sichuan, China.]. Wang LF; He RL; Yang L; Chen YM; Liu Y; Zhang J Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3689-3697. PubMed ID: 29696869 [TBL] [Abstract][Full Text] [Related]
36. Ecosystem response to climatic change: the importance of the cold season. Bokhorst S; Bjerke JW; Tømmervik H; Preece C; Phoenix GK Ambio; 2012; 41 Suppl 3(Suppl 3):246-55. PubMed ID: 22864698 [TBL] [Abstract][Full Text] [Related]
37. Conserving and managing the subnivium. Zuckerberg B; Pauli JN Conserv Biol; 2018 Aug; 32(4):774-781. PubMed ID: 29420843 [TBL] [Abstract][Full Text] [Related]
38. Short-term effects of snow cover manipulation on soil bacterial diversity and community composition. Ren Y; Zhang L; Yang K; Li Z; Yin R; Tan B; Wang L; Liu Y; Li H; You C; Liu S; Xu Z; Kardol P Sci Total Environ; 2020 Nov; 741():140454. PubMed ID: 32610243 [TBL] [Abstract][Full Text] [Related]
39. Lasting effects of snow accumulation on summer performance of large herbivores in alpine ecosystems may not last. Mysterud A; Austrheim G J Anim Ecol; 2014 May; 83(3):712-9. PubMed ID: 24164593 [TBL] [Abstract][Full Text] [Related]
40. Analysis of future climate change impacts on snow distribution over mountainous watersheds in Northern California by means of a physically-based snow distribution model. Ishida K; Ercan A; Trinh T; Kavvas ML; Ohara N; Carr K; Anderson ML Sci Total Environ; 2018 Dec; 645():1065-1082. PubMed ID: 30248832 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]