These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 26824941)
21. Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase. Palencia A; Li X; Bu W; Choi W; Ding CZ; Easom EE; Feng L; Hernandez V; Houston P; Liu L; Meewan M; Mohan M; Rock FL; Sexton H; Zhang S; Zhou Y; Wan B; Wang Y; Franzblau SG; Woolhiser L; Gruppo V; Lenaerts AJ; O'Malley T; Parish T; Cooper CB; Waters MG; Ma Z; Ioerger TR; Sacchettini JC; Rullas J; Angulo-Barturen I; Pérez-Herrán E; Mendoza A; Barros D; Cusack S; Plattner JJ; Alley MR Antimicrob Agents Chemother; 2016 Oct; 60(10):6271-80. PubMed ID: 27503647 [TBL] [Abstract][Full Text] [Related]
22. The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Huszár S; Chibale K; Singh V Drug Discov Today; 2020 Apr; 25(4):772-780. PubMed ID: 32062007 [TBL] [Abstract][Full Text] [Related]
23. New tuberculosis drugs on the horizon. Cole ST; Riccardi G Curr Opin Microbiol; 2011 Oct; 14(5):570-6. PubMed ID: 21821466 [TBL] [Abstract][Full Text] [Related]
24. [Frontier of mycobacterium research--host vs. mycobacterium]. Okada M; Shirakawa T Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793 [TBL] [Abstract][Full Text] [Related]
26. Infection caused by Mycobacterium tuberculosis. Peloquin CA; Berning SE Ann Pharmacother; 1994 Jan; 28(1):72-84. PubMed ID: 8123968 [TBL] [Abstract][Full Text] [Related]
27. Host Directed Therapies for Tuberculosis: Futures Strategies for an Ancient Disease. Palucci I; Delogu G Chemotherapy; 2018; 63(3):172-180. PubMed ID: 30032143 [TBL] [Abstract][Full Text] [Related]
28. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents. Pieroni M; Wan B; Cho S; Franzblau SG; Costantino G Eur J Med Chem; 2014 Jan; 72():26-34. PubMed ID: 24333612 [TBL] [Abstract][Full Text] [Related]
29. Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them. Evangelopoulos D; da Fonseca JD; Waddell SJ Int J Infect Dis; 2015 Mar; 32():76-80. PubMed ID: 25809760 [TBL] [Abstract][Full Text] [Related]
30. Hollow Fiber System Model for Tuberculosis: The European Medicines Agency Experience. Cavaleri M; Manolis E Clin Infect Dis; 2015 Aug; 61 Suppl 1():S1-4. PubMed ID: 26224766 [TBL] [Abstract][Full Text] [Related]
31. Model-Based Meta-Analysis of Relapsing Mouse Model Studies from the Critical Path to Tuberculosis Drug Regimens Initiative Database. Berg A; Clary J; Hanna D; Nuermberger E; Lenaerts A; Ammerman N; Ramey M; Hartley D; Hermann D Antimicrob Agents Chemother; 2022 Mar; 66(3):e0179321. PubMed ID: 35099274 [TBL] [Abstract][Full Text] [Related]
32. Models and approaches for anti-TB drug testing. Yasinskaya Y; Sacks L Expert Rev Anti Infect Ther; 2011 Jul; 9(7):823-31. PubMed ID: 21810054 [TBL] [Abstract][Full Text] [Related]
33. Spectinamides are effective partner agents for the treatment of tuberculosis in multiple mouse infection models. Robertson GT; Scherman MS; Bruhn DF; Liu J; Hastings C; McNeil MR; Butler MM; Bowlin TL; Lee RB; Lee RE; Lenaerts AJ J Antimicrob Chemother; 2017 Mar; 72(3):770-777. PubMed ID: 27999020 [TBL] [Abstract][Full Text] [Related]
34. Using animal models to develop new treatments for tuberculosis. Nuermberger E Semin Respir Crit Care Med; 2008 Oct; 29(5):542-51. PubMed ID: 18810687 [TBL] [Abstract][Full Text] [Related]
35. Programs to facilitate tuberculosis drug discovery: the tuberculosis antimicrobial acquisition and coordinating facility. Goldman RC; Laughon BE; Reynolds RC; Secrist JA; Maddry JA; Guié MA; Poffenberger AC; Kwong CA; Ananthan S Infect Disord Drug Targets; 2007 Jun; 7(2):92-104. PubMed ID: 17970221 [TBL] [Abstract][Full Text] [Related]
36. Rising standards for tuberculosis drug development. Balganesh TS; Alzari PM; Cole ST Trends Pharmacol Sci; 2008 Nov; 29(11):576-81. PubMed ID: 18799223 [TBL] [Abstract][Full Text] [Related]
37. Mycobacterium tuberculosis cytochrome P450 enzymes: a cohort of novel TB drug targets. Hudson SA; McLean KJ; Munro AW; Abell C Biochem Soc Trans; 2012 Jun; 40(3):573-9. PubMed ID: 22616869 [TBL] [Abstract][Full Text] [Related]
38. Search for new drugs for treatment of tuberculosis. Orme I; Antimicrob Agents Chemother; 2001 Jul; 45(7):1943-6. PubMed ID: 11408205 [No Abstract] [Full Text] [Related]
39. Shortening Tuberculosis Treatment With Fluoroquinolones: Lost in Translation? Lanoix JP; Chaisson RE; Nuermberger EL Clin Infect Dis; 2016 Feb; 62(4):484-90. PubMed ID: 26527614 [TBL] [Abstract][Full Text] [Related]
40. A survey of tuberculosis infection control practices at the NIH/NIAID/DAIDS-supported clinical trial sites in low and middle income countries. Godfrey C; Tauscher G; Hunsberger S; Austin M; Scott L; Schouten JT; Luetkemeyer AF; Benson C; Coombs R; Swindells S; BMC Infect Dis; 2016 Jun; 16():269. PubMed ID: 27287374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]