BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26825079)

  • 1. Adsorption Kinetics and Binding Studies of Protein Quantum Dots Interaction: A Spectroscopic Approach.
    Vaishanav SK; Korram J; Nagwanshi R; Ghosh KK; Satnami ML
    J Fluoresc; 2016 May; 26(3):855-65. PubMed ID: 26825079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic investigation of water-soluble alloyed QDs with bovine serum albumin.
    Adarsh KS; Singh MK; Kotresh MG; Inamdar LS; Shivkumar MA; Jagatap BN; Mulimani BG; Inamdar SR
    Luminescence; 2017 Feb; 32(1):35-42. PubMed ID: 27118686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.
    Bardajee GR; Hooshyar Z
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic studies on the thermodynamics of L-cysteine capped CdSe/CdS quantum dots--BSA interactions.
    Ding L; Zhou PJ; Li SQ; Shi GY; Zhong T; Wu M
    J Fluoresc; 2011 Jan; 21(1):17-24. PubMed ID: 20593228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on the synchronous interactions between different thiol-capped CdTe quantum dots and BSA].
    Ma JJ; Liang JG; Han HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1039-43. PubMed ID: 20545157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between felodipine and bovine serum albumin: fluorescence quenching study.
    Mote US; Bhattar SL; Patil SR; Kolekar GB
    Luminescence; 2010; 25(1):1-8. PubMed ID: 19424966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes.
    Kotresh MG; Inamdar LS; Shivkumar MA; Adarsh KS; Jagatap BN; Mulimani BG; Advirao GM; Inamdar SR
    Luminescence; 2017 Jun; 32(4):631-639. PubMed ID: 27808463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin.
    Sannaikar MS; Inamdar LS; Pujar GH; Wari MN; Balasinor NH; Inamdar SR
    Luminescence; 2018 May; 33(3):495-504. PubMed ID: 29282888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic investigation of interaction between bovine serum albumin and amine-functionalized silicon quantum dots.
    Chatterjee S; Mukherjee TK
    Phys Chem Chem Phys; 2014 May; 16(18):8400-8. PubMed ID: 24663102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic analyses on interaction of Naphazoline hydrochloride with bovine serum albumin.
    Zhu S; Liu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 98():142-7. PubMed ID: 22995546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between a potent corticosteroid drug - dexamethasone with bovine serum albumin and human serum albumin: a fluorescence quenching and fourier transformation infrared spectroscopy study.
    Naik PN; Chimatadar SA; Nandibewoor ST
    J Photochem Photobiol B; 2010 Sep; 100(3):147-59. PubMed ID: 20573517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic studies on the interaction between nicotinamide and bovine serum albumin.
    Xu H; Liu Q; Wen Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):984-8. PubMed ID: 18373949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.
    Gharagozlou M; Boghaei DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison study on the interaction of hyperoside and bovine serum albumin with Tachiya model and Stern-Volmer equation.
    Qin Y; Zhang Y; Yan S; Ye L
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1506-10. PubMed ID: 20202894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin.
    Jahanban-Esfahlan A; Panahi-Azar V; Sajedi S
    Biopolymers; 2015 Nov; 103(11):638-45. PubMed ID: 26139573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)Fe(x)S quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin.
    Khani O; Rajabi HR; Yousefi MH; Khosravi AA; Jannesari M; Shamsipur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jul; 79(2):361-9. PubMed ID: 21482179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive spectroscopic studies of synergism between Gadong starch based carbon dots and bovine serum albumin.
    Sonthanasamy RSA; Sulaiman NMN; Tan LL; Lazim AM
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jul; 218():85-96. PubMed ID: 30954801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The investigation of the interaction between orientin and bovine serum albumin by spectroscopic analysis.
    Toprak M; Arık M
    Luminescence; 2014 Nov; 29(7):805-9. PubMed ID: 24376141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding interactions of water-soluble camptothecin derivatives with bovine serum albumin.
    Li Q; Zhu Q; Deng X; He W; Zhao T; Zhang B
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():124-30. PubMed ID: 22051412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the association behaviors between bovine serum albumin and 2-(4-methylphenyl)-3-(N-acetyl)-5-(2,4-dichlorophenoxymethyl)-1,3,4-oxodiazoline.
    Huang Z; Wang R; Han E; Xu L; Song Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():260-5. PubMed ID: 23665471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.