These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26825125)
21. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Bellinger AM; Reiken S; Carlson C; Mongillo M; Liu X; Rothman L; Matecki S; Lacampagne A; Marks AR Nat Med; 2009 Mar; 15(3):325-30. PubMed ID: 19198614 [TBL] [Abstract][Full Text] [Related]
22. Sarcoplasmic reticulum Ca2+ permeation explored from the lumen side in mdx muscle fibers under voltage control. Robin G; Berthier C; Allard B J Gen Physiol; 2012 Mar; 139(3):209-18. PubMed ID: 22371362 [TBL] [Abstract][Full Text] [Related]
23. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca Maxwell JT; Blatter LA J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837 [TBL] [Abstract][Full Text] [Related]
27. The EF-hand Ca2+ Binding Domain Is Not Required for Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor. Guo W; Sun B; Xiao Z; Liu Y; Wang Y; Zhang L; Wang R; Chen SR J Biol Chem; 2016 Jan; 291(5):2150-60. PubMed ID: 26663082 [TBL] [Abstract][Full Text] [Related]
28. Postdevelopmental knockout of Orai1 improves muscle pathology in a mouse model of Duchenne muscular dystrophy. García-Castañeda M; Michelucci A; Zhao N; Malik S; Dirksen RT J Gen Physiol; 2022 Sep; 154(9):. PubMed ID: 35939054 [TBL] [Abstract][Full Text] [Related]
29. Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice. Schertzer JD; van der Poel C; Shavlakadze T; Grounds MD; Lynch GS Am J Physiol Cell Physiol; 2008 Jan; 294(1):C161-8. PubMed ID: 17989207 [TBL] [Abstract][Full Text] [Related]
30. Reduced threshold for luminal Ca2+ activation of RyR1 underlies a causal mechanism of porcine malignant hyperthermia. Jiang D; Chen W; Xiao J; Wang R; Kong H; Jones PP; Zhang L; Fruen B; Chen SR J Biol Chem; 2008 Jul; 283(30):20813-20. PubMed ID: 18505726 [TBL] [Abstract][Full Text] [Related]
32. Retrograde activation of store-operated calcium channel. Ma J; Pan Z Cell Calcium; 2003; 33(5-6):375-84. PubMed ID: 12765683 [TBL] [Abstract][Full Text] [Related]
33. Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle. Culligan K; Banville N; Dowling P; Ohlendieck K J Appl Physiol (1985); 2002 Feb; 92(2):435-45. PubMed ID: 11796649 [TBL] [Abstract][Full Text] [Related]
34. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Beard NA; Laver DR; Dulhunty AF Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380 [TBL] [Abstract][Full Text] [Related]
35. Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue. Head SI Exp Physiol; 2010 May; 95(5):641-56. PubMed ID: 20139167 [TBL] [Abstract][Full Text] [Related]
36. Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle. Royer L; Sztretye M; Manno C; Pouvreau S; Zhou J; Knollmann BC; Protasi F; Allen PD; Ríos E J Gen Physiol; 2010 Sep; 136(3):325-38. PubMed ID: 20713548 [TBL] [Abstract][Full Text] [Related]
37. Comparison of myoplasmic calcium movements during excitation-contraction coupling in frog twitch and mouse fast-twitch muscle fibers. Hollingworth S; Baylor SM J Gen Physiol; 2013 May; 141(5):567-83. PubMed ID: 23630340 [TBL] [Abstract][Full Text] [Related]