These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26825125)

  • 21. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle.
    Bellinger AM; Reiken S; Carlson C; Mongillo M; Liu X; Rothman L; Matecki S; Lacampagne A; Marks AR
    Nat Med; 2009 Mar; 15(3):325-30. PubMed ID: 19198614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sarcoplasmic reticulum Ca2+ permeation explored from the lumen side in mdx muscle fibers under voltage control.
    Robin G; Berthier C; Allard B
    J Gen Physiol; 2012 Mar; 139(3):209-18. PubMed ID: 22371362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Orai1 mediates exacerbated Ca(2+) entry in dystrophic skeletal muscle.
    Zhao X; Moloughney JG; Zhang S; Komazaki S; Weisleder N
    PLoS One; 2012; 7(11):e49862. PubMed ID: 23185465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential expression of genes involved in the calcium homeostasis in masticatory muscles of MDX mice.
    Kunert-Keil CH; Gredes T; Lucke S; Botzenhart U; Dominiak M; Gedrange T
    J Physiol Pharmacol; 2014 Apr; 65(2):317-24. PubMed ID: 24781740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca
    Kutchukian C; Szentesi P; Allard B; Buj-Bello A; Csernoch L; Jacquemond V
    Cell Calcium; 2019 Jun; 80():91-100. PubMed ID: 30999217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The EF-hand Ca2+ Binding Domain Is Not Required for Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor.
    Guo W; Sun B; Xiao Z; Liu Y; Wang Y; Zhang L; Wang R; Chen SR
    J Biol Chem; 2016 Jan; 291(5):2150-60. PubMed ID: 26663082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postdevelopmental knockout of Orai1 improves muscle pathology in a mouse model of Duchenne muscular dystrophy.
    García-Castañeda M; Michelucci A; Zhao N; Malik S; Dirksen RT
    J Gen Physiol; 2022 Sep; 154(9):. PubMed ID: 35939054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice.
    Schertzer JD; van der Poel C; Shavlakadze T; Grounds MD; Lynch GS
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C161-8. PubMed ID: 17989207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced threshold for luminal Ca2+ activation of RyR1 underlies a causal mechanism of porcine malignant hyperthermia.
    Jiang D; Chen W; Xiao J; Wang R; Kong H; Jones PP; Zhang L; Fruen B; Chen SR
    J Biol Chem; 2008 Jul; 283(30):20813-20. PubMed ID: 18505726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retrograde activation of store-operated calcium channel.
    Ma J; Pan Z
    Cell Calcium; 2003; 33(5-6):375-84. PubMed ID: 12765683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle.
    Culligan K; Banville N; Dowling P; Ohlendieck K
    J Appl Physiol (1985); 2002 Feb; 92(2):435-45. PubMed ID: 11796649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue.
    Head SI
    Exp Physiol; 2010 May; 95(5):641-56. PubMed ID: 20139167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle.
    Royer L; Sztretye M; Manno C; Pouvreau S; Zhou J; Knollmann BC; Protasi F; Allen PD; Ríos E
    J Gen Physiol; 2010 Sep; 136(3):325-38. PubMed ID: 20713548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of myoplasmic calcium movements during excitation-contraction coupling in frog twitch and mouse fast-twitch muscle fibers.
    Hollingworth S; Baylor SM
    J Gen Physiol; 2013 May; 141(5):567-83. PubMed ID: 23630340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle.
    Laver DR; Roden LD; Ahern GP; Eager KR; Junankar PR; Dulhunty AF
    J Membr Biol; 1995 Sep; 147(1):7-22. PubMed ID: 8531200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dysregulation of Intracellular Ca
    Lopez JR; Kolster J; Uryash A; Estève E; Altamirano F; Adams JA
    Mol Neurobiol; 2018 Jan; 55(1):603-618. PubMed ID: 27975174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ryanodine receptor activity and store-operated Ca
    Pearce L; Meizoso-Huesca A; Seng C; Lamboley CR; Singh DP; Launikonis BS
    J Physiol; 2023 Oct; 601(19):4183-4202. PubMed ID: 35218018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.