These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 26825532)
1. Distinct Requirements for Vacuolar Protein Sorting 34 Downstream Effector Phosphatidylinositol 3-Phosphate 5-Kinase in Podocytes Versus Proximal Tubular Cells. Venkatareddy M; Verma R; Kalinowski A; Patel SR; Shisheva A; Garg P J Am Soc Nephrol; 2016 Sep; 27(9):2702-19. PubMed ID: 26825532 [TBL] [Abstract][Full Text] [Related]
2. Class III PI 3-kinase is the main source of PtdIns3P substrate and membrane recruitment signal for PIKfyve constitutive function in podocyte endomembrane homeostasis. Ikonomov OC; Sbrissa D; Venkatareddy M; Tisdale E; Garg P; Shisheva A Biochim Biophys Acta; 2015 May; 1853(5):1240-50. PubMed ID: 25619930 [TBL] [Abstract][Full Text] [Related]
3. Active vacuolar H+ ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency. Compton LM; Ikonomov OC; Sbrissa D; Garg P; Shisheva A Am J Physiol Cell Physiol; 2016 Sep; 311(3):C366-77. PubMed ID: 27335171 [TBL] [Abstract][Full Text] [Related]
4. Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. Bechtel W; Helmstädter M; Balica J; Hartleben B; Kiefer B; Hrnjic F; Schell C; Kretz O; Liu S; Geist F; Kerjaschki D; Walz G; Huber TB J Am Soc Nephrol; 2013 Apr; 24(5):727-43. PubMed ID: 23492732 [TBL] [Abstract][Full Text] [Related]
6. PIK3C3/VPS34, the class III PtdIns 3-kinase, plays indispensable roles in the podocyte. Chen JK Autophagy; 2013 Jun; 9(6):923-4. PubMed ID: 23518611 [TBL] [Abstract][Full Text] [Related]
8. The class III phosphatidylinositol 3-kinase PIK3C3/VPS34 regulates endocytosis and autophagosome-autolysosome formation in podocytes. Bechtel W; Helmstädter M; Balica J; Hartleben B; Schell C; Huber TB Autophagy; 2013 Jul; 9(7):1097-9. PubMed ID: 23614954 [TBL] [Abstract][Full Text] [Related]
9. PIKfyve Kinase and SKD1 AAA ATPase define distinct endocytic compartments. Only PIKfyve expression inhibits the cell-vacoulating activity of Helicobacter pylori VacA toxin. Ikonomov OC; Sbrissa D; Yoshimori T; Cover TL; Shisheva A J Biol Chem; 2002 Nov; 277(48):46785-90. PubMed ID: 12213828 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of lipid kinase PIKfyve reveals a role for phosphatase Inpp4b in the regulation of PI(3)P-mediated lysosome dynamics through VPS34 activity. Saffi GT; Wang CA; Mangialardi EM; Vacher J; Botelho RJ; Salmena L J Biol Chem; 2022 Aug; 298(8):102187. PubMed ID: 35760104 [TBL] [Abstract][Full Text] [Related]
11. Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3,5-P2 production for endomembrane integrity. Ikonomov OC; Sbrissa D; Mlak K; Kanzaki M; Pessin J; Shisheva A J Biol Chem; 2002 Mar; 277(11):9206-11. PubMed ID: 11714711 [TBL] [Abstract][Full Text] [Related]
12. Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. Sbrissa D; Ikonomov OC; Fu Z; Ijuin T; Gruenberg J; Takenawa T; Shisheva A J Biol Chem; 2007 Aug; 282(33):23878-91. PubMed ID: 17556371 [TBL] [Abstract][Full Text] [Related]
13. PIKfyve accelerates phagosome acidification through activation of TRPML1 while arrests aberrant vacuolation independent of the Ca2+ channel. Isobe Y; Nigorikawa K; Tsurumi G; Takemasu S; Takasuga S; Kofuji S; Hazeki K J Biochem; 2019 Jan; 165(1):75-84. PubMed ID: 30295876 [TBL] [Abstract][Full Text] [Related]
15. Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes. Giridharan SSP; Luo G; Rivero-Rios P; Steinfeld N; Tronchere H; Singla A; Burstein E; Billadeau DD; Sutton MA; Weisman LS Elife; 2022 Jan; 11():. PubMed ID: 35040777 [TBL] [Abstract][Full Text] [Related]
16. Insulin activation of vacuolar protein sorting 34 mediates localized phosphatidylinositol 3-phosphate production at lamellipodia and activation of mTOR/S6K1. Hirsch DS; Shen Y; Dokmanovic M; Yu J; Mohan N; Elzarrad MK; Wu WJ Cell Signal; 2014 Jun; 26(6):1258-68. PubMed ID: 24582588 [TBL] [Abstract][Full Text] [Related]
17. Nephron-specific knockin of the PIKfyve-binding-deficient Vac14 Michgehl U; Skryabin BV; Bayraktar S; Vollenbröker B; Ciarimboli G; Heitplatz B; Van Marck V; Gröne HJ; Pavenstädt H; Weide T Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1307-F1319. PubMed ID: 30066585 [TBL] [Abstract][Full Text] [Related]
18. Active PIKfyve associates with and promotes the membrane attachment of the late endosome-to-trans-Golgi network transport factor Rab9 effector p40. Ikonomov OC; Sbrissa D; Mlak K; Deeb R; Fligger J; Soans A; Finley RL; Shisheva A J Biol Chem; 2003 Dec; 278(51):50863-71. PubMed ID: 14530284 [TBL] [Abstract][Full Text] [Related]
19. New pieces in the complex puzzle of aberrant vacuolation. Focus on "Active vacuolar H+ ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency". Saveanu L; Lotersztajn S Am J Physiol Cell Physiol; 2016 Sep; 311(3):C363-5. PubMed ID: 27488670 [No Abstract] [Full Text] [Related]
20. Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomenbrane localization. Sbrissa D; Ikonomov OC; Shisheva A J Biol Chem; 2002 Feb; 277(8):6073-9. PubMed ID: 11706043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]