These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 26825619)

  • 1. Anterior Insula Regulates Multiscale Temporal Organization of Sleep and Wake Activity.
    Chen MC; Chiang WY; Yugay T; Patxot M; Özçivit İB; Hu K; Lu J
    J Biol Rhythms; 2016 Apr; 31(2):182-93. PubMed ID: 26825619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian rhythms and sleep have additive effects on respiration in the rat.
    Stephenson R; Liao KS; Hamrahi H; Horner RL
    J Physiol; 2001 Oct; 536(Pt 1):225-35. PubMed ID: 11579171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling interindividual differences in spontaneous internal desynchrony patterns.
    Gleit RD; Diniz Behn CG; Booth V
    J Biol Rhythms; 2013 Oct; 28(5):339-55. PubMed ID: 24132060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythms of sleep and wakefulness in mice: analysis using long-term automated recording of sleep.
    Richardson GS; Moore-Ede MC; Czeisler CA; Dement WC
    Am J Physiol; 1985 Mar; 248(3 Pt 2):R320-30. PubMed ID: 3838419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quartet neural system model orchestrating sleep and wakefulness mechanisms.
    Tamakawa Y; Karashima A; Koyama Y; Katayama N; Nakao M
    J Neurophysiol; 2006 Apr; 95(4):2055-69. PubMed ID: 16282204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crepuscular rhythms of EEG sleep-wake in a hystricomorph rodent, Octodon degus.
    Kas MJ; Edgar DM
    J Biol Rhythms; 1998 Feb; 13(1):9-17. PubMed ID: 9486839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat.
    Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J
    Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of an eight-hour advance of the light-dark cycle on sleep-wake rhythm in the rat.
    Sei H; Kiuchi T; Chang HY; Morita Y
    Neurosci Lett; 1992 Mar; 137(2):161-4. PubMed ID: 1584456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote long-term registrations of sleep-wake rhythms, core body temperature and activity in marmoset monkeys.
    Hoffmann K; Coolen A; Schlumbohm C; Meerlo P; Fuchs E
    Behav Brain Res; 2012 Dec; 235(2):113-23. PubMed ID: 22850608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep-wake and diurnal modulation of nitric oxide in the perifornical-lateral hypothalamic area: real-time detection in freely behaving rats.
    Kostin A; McGinty D; Szymusiak R; Alam MN
    Neuroscience; 2013 Dec; 254():275-84. PubMed ID: 24056193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensatory sleep responses to wakefulness induced by the dopamine autoreceptor antagonist (-)DS121.
    Olive MF; Seidel WF; Edgar DM
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1073-83. PubMed ID: 9618410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration.
    Le Dantec Y; Hache G; Guilloux JP; Guiard BP; David DJ; Adrien J; Escourrou P
    Neuroscience; 2014 Aug; 274():357-68. PubMed ID: 24909899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance of the metabotropic glutamate receptor (mGluR5) in the regulation of NREM-REM sleep cycle and homeostasis: evidence from mGluR5 (-/-) mice.
    Ahnaou A; Raeymaekers L; Steckler T; Drinkenbrug WH
    Behav Brain Res; 2015 Apr; 282():218-26. PubMed ID: 25591476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia.
    Zhang H; Wheat H; Wang P; Jiang S; Baghdoyan HA; Neubig RR; Shi XY; Lydic R
    Sleep; 2016 Feb; 39(2):393-404. PubMed ID: 26564126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of the sleep-wake rhythm to an 8-hour advance of the light-dark cycle in the rat.
    Sei H; Kiuchi T; Chang HY; Seno H; Sano A; Morita Y
    Chronobiol Int; 1994 Oct; 11(5):293-300. PubMed ID: 7828212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of circadian organization of sleep and wakefulness during hibernation.
    Larkin JE; Franken P; Heller HC
    Am J Physiol Regul Integr Comp Physiol; 2002 Apr; 282(4):R1086-95. PubMed ID: 11893613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats.
    Datta S; Siwek DF
    J Neurosci Res; 2002 Nov; 70(4):611-21. PubMed ID: 12404515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NREM-REM alternation complicates transitions from napping to non-napping behavior in a three-state model of sleep-wake regulation.
    Athanasouli C; Kalmbach K; Booth V; Diniz Behn CG
    Math Biosci; 2023 Jan; 355():108929. PubMed ID: 36448821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.