BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 26825702)

  • 1. Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.
    Grønli J; Rempe MJ; Clegern WC; Schmidt M; Wisor JP
    J Sleep Res; 2016 Jun; 25(3):257-68. PubMed ID: 26825702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat.
    Maloney KJ; Cape EG; Gotman J; Jones BE
    Neuroscience; 1997 Jan; 76(2):541-55. PubMed ID: 9015337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep Homeostatic and Waking Behavioral Phenotypes in
    Grønli J; Clegern WC; Schmidt MA; Nemri RS; Rempe MJ; Gallitano AL; Wisor JP
    Sleep; 2016 Dec; 39(12):2189-2199. PubMed ID: 28057087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV; Tobler I
    Brain Res; 2005 Jul; 1050(1-2):64-71. PubMed ID: 15975563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and validation of a computer-based sleep-scoring algorithm.
    Louis RP; Lee J; Stephenson R
    J Neurosci Methods; 2004 Feb; 133(1-2):71-80. PubMed ID: 14757347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need.
    Vassalli A; Franken P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5464-E5473. PubMed ID: 28630298
    [No Abstract]   [Full Text] [Related]  

  • 8. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical and subcortical EEG in relation to sleep-wake behavior in mammalian species.
    Lancel M
    Neuropsychobiology; 1993; 28(3):154-9. PubMed ID: 8278030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical oscillations in human medial temporal lobe during wakefulness and all-night sleep.
    Uchida S; Maehara T; Hirai N; Okubo Y; Shimizu H
    Brain Res; 2001 Feb; 891(1-2):7-19. PubMed ID: 11164805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discharge and Role of GABA Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recordings in Mice.
    Cissé Y; Ishibashi M; Jost J; Toossi H; Mainville L; Adamantidis A; Leonard CS; Jones BE
    J Neurosci; 2020 Jul; 40(31):5970-5989. PubMed ID: 32576622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local experience-dependent changes in the wake EEG after prolonged wakefulness.
    Hung CS; Sarasso S; Ferrarelli F; Riedner B; Ghilardi MF; Cirelli C; Tononi G
    Sleep; 2013 Jan; 36(1):59-72. PubMed ID: 23288972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep/wake movement velocities, trajectories and micro-arousals during maturation in rats.
    Gradwohl G; Olini N; Huber R
    BMC Neurosci; 2017 Feb; 18(1):24. PubMed ID: 28173758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep.
    Cantero JL; Atienza M; Salas RM; Dominguez-Marin E
    J Neurosci; 2002 Jun; 22(11):4702-8. PubMed ID: 12040077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuropeptide-S evoked arousal with electroencephalogram slow-wave compensatory drive in rats.
    Ahnaou A; Drinkenburg WH
    Neuropsychobiology; 2012 Jun; 65(4):195-205. PubMed ID: 22538299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence from the waking electroencephalogram that short sleepers live under higher homeostatic sleep pressure than long sleepers.
    Aeschbach D; Postolache TT; Sher L; Matthews JR; Jackson MA; Wehr TA
    Neuroscience; 2001; 102(3):493-502. PubMed ID: 11226688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragments of wake-like activity frame down-states of sleep slow oscillations in humans: new vistas for studying homeostatic processes during sleep.
    Menicucci D; Piarulli A; Allegrini P; Laurino M; Mastorci F; Sebastiani L; Bedini R; Gemignani A
    Int J Psychophysiol; 2013 Aug; 89(2):151-7. PubMed ID: 23384886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waking and sleep electroencephalogram variables as human sleep homeostatic process biomarkers after drug administration.
    Giménez S; Romero S; Mañanas MA; Barbanoj MJ
    Neuropsychobiology; 2011; 63(4):252-60. PubMed ID: 21494053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctive effects of modafinil and d-amphetamine on the homeostatic and circadian modulation of the human waking EEG.
    Chapotot F; Pigeau R; Canini F; Bourdon L; Buguet A
    Psychopharmacology (Berl); 2003 Mar; 166(2):127-38. PubMed ID: 12552359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle.
    Ferrara M; De Gennaro L
    Curr Top Med Chem; 2011; 11(19):2423-37. PubMed ID: 21906022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.