BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

742 related articles for article (PubMed ID: 26825792)

  • 1. MIS Expandable Interbody Spacers: A Literature Review and Biomechanical Comparison of an Expandable MIS TLIF With Conventional TLIF and ALIF.
    Cannestra AF; Peterson MD; Parker SR; Roush TF; Bundy JV; Turner AW
    Spine (Phila Pa 1976); 2016 Apr; 41 Suppl 8():S44-9. PubMed ID: 26825792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model.
    Mantell M; Cyriac M; Haines CM; Gudipally M; O'Brien JR
    J Neurosurg Spine; 2016 Jan; 24(1):32-8. PubMed ID: 26384133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical evaluation of stand-alone lumbar polyether-ether-ketone interbody cage with integrated screws.
    Kornblum MB; Turner AW; Cornwall GB; Zatushevsky MA; Phillips FM
    Spine J; 2013 Jan; 13(1):77-84. PubMed ID: 23295035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary stiffness of a modified transforaminal lumbar interbody fusion cage with integrated screw fixation: cadaveric biomechanical study.
    Keiler A; Schmoelz W; Erhart S; Gnanalingham K
    Spine (Phila Pa 1976); 2014 Aug; 39(17):E994-E1000. PubMed ID: 24875958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation.
    Reis MT; Reyes PM; Bse ; Altun I; Newcomb AG; Singh V; Chang SW; Kelly BP; Crawford NR
    J Neurosurg Spine; 2016 Dec; 25(6):720-726. PubMed ID: 27391398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iliac screws may not be necessary in long-segment constructs with L5-S1 anterior lumbar interbody fusion: cadaveric study of stability and instrumentation strain.
    Hlubek RJ; Godzik J; Newcomb AGUS; Lehrman JN; de Andrada B; Bohl MA; Farber SH; Kelly BP; Turner JD
    Spine J; 2019 May; 19(5):942-950. PubMed ID: 30419290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical comparison of anterior lumbar interbody fusion and transforaminal lumbar interbody fusion.
    Ploumis A; Wu C; Fischer G; Mehbod AA; Wu W; Faundez A; Transfeldt EE
    J Spinal Disord Tech; 2008 Apr; 21(2):120-5. PubMed ID: 18391717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques.
    Niemeyer TK; Koriller M; Claes L; Kettler A; Werner K; Wilke HJ
    Neurosurgery; 2006 Dec; 59(6):1271-6; discussion 1276-7. PubMed ID: 17277690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study.
    Ambati DV; Wright EK; Lehman RA; Kang DG; Wagner SC; Dmitriev AE
    Spine J; 2015 Aug; 15(8):1812-22. PubMed ID: 24983669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments.
    Sim HB; Murovic JA; Cho BY; Lim TJ; Park J
    J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis.
    Slucky AV; Brodke DS; Bachus KN; Droge JA; Braun JT
    Spine J; 2006; 6(1):78-85. PubMed ID: 16413452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of transforaminal lumbar interbody fusion in the setting of retained facets and posterior fixation using transfacet or standard pedicle screws.
    Chin KR; Reis MT; Reyes PM; Newcomb AG; Neagoe A; Gabriel JP; Sung RD; Crawford NR
    Spine J; 2015 May; 15(5):1077-82. PubMed ID: 24210638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplemental rods are needed to maximally reduce rod strain across the lumbosacral junction with TLIF but not ALIF in long constructs.
    Godzik J; Hlubek RJ; Newcomb AGUS; Lehrman JN; de Andrada Pereira B; Farber SH; Lenke LG; Kelly BP; Turner JD
    Spine J; 2019 Jun; 19(6):1121-1131. PubMed ID: 30684758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages.
    Nayak AN; Gutierrez S; Billys JB; Santoni BG; Castellvi AE
    Spine J; 2013 Oct; 13(10):1331-8. PubMed ID: 23685215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model.
    Gerber M; Crawford NR; Chamberlain RH; Fifield MS; LeHuec JC; Dickman CA
    Spine (Phila Pa 1976); 2006 Apr; 31(7):762-8. PubMed ID: 16582849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel pedicle screw and plate system provides superior stability in unilateral fixation for minimally invasive transforaminal lumbar interbody fusion: an in vitro biomechanical study.
    Li J; Xiao H; Zhu Q; Zhou Y; Li C; Liu H; Huang Z; Shang J
    PLoS One; 2015; 10(3):e0123134. PubMed ID: 25807513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine.
    Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD
    J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical effect of transforaminal lumbar interbody fusion and axial interbody threaded rod on range of motion and S1 screw loading in a destabilized L5-S1 spondylolisthesis model.
    Fleischer GD; Hart D; Ferrara LA; Freeman AL; Avidano EE
    Spine (Phila Pa 1976); 2014 Jan; 39(2):E82-8. PubMed ID: 24150429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revision of transforaminal lumbar interbody fusion using anterior lumbar interbody fusion: a biomechanical study in nonosteoporotic bone.
    Ploumis A; Wu C; Mehbod A; Fischer G; Faundez A; Wu W; Transfeldt E
    J Neurosurg Spine; 2010 Jan; 12(1):82-7. PubMed ID: 20043769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.