These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26825819)

  • 1. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.
    Diaz De Rienzo MA; Stevenson PS; Marchant R; Banat IM
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5773-9. PubMed ID: 26825819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas aeruginosa biofilm disruption using microbial surfactants.
    Díaz De Rienzo MA; Stevenson PS; Marchant R; Banat IM
    J Appl Microbiol; 2016 Apr; 120(4):868-76. PubMed ID: 26742560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.
    Díaz De Rienzo MA; Stevenson P; Marchant R; Banat IM
    FEMS Microbiol Lett; 2016 Jan; 363(2):fnv224. PubMed ID: 26598715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.
    De Rienzo MA; Martin PJ
    Curr Microbiol; 2016 Aug; 73(2):183-9. PubMed ID: 27113589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent.
    Díaz De Rienzo MA; Banat IM; Dolman B; Winterburn J; Martin PJ
    N Biotechnol; 2015 Dec; 32(6):720-6. PubMed ID: 25738966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms.
    Irie Y; O'toole GA; Yuk MH
    FEMS Microbiol Lett; 2005 Sep; 250(2):237-43. PubMed ID: 16098688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection.
    Chebbi A; Elshikh M; Haque F; Ahmed S; Dobbin S; Marchant R; Sayadi S; Chamkha M; Banat IM
    J Basic Microbiol; 2017 May; 57(5):364-375. PubMed ID: 28156000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of sophorolipids against microbial biofilms on medical-grade silicone.
    Ceresa C; Fracchia L; Williams M; Banat IM; Díaz De Rienzo MA
    J Biotechnol; 2020 Feb; 309():34-43. PubMed ID: 31887325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm.
    Dong D; Thomas N; Thierry B; Vreugde S; Prestidge CA; Wormald PJ
    PLoS One; 2015; 10(6):e0131806. PubMed ID: 26125555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa.
    Pamp SJ; Tolker-Nielsen T
    J Bacteriol; 2007 Mar; 189(6):2531-9. PubMed ID: 17220224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk.
    Picoli T; Peter CM; Zani JL; Waller SB; Lopes MG; Boesche KN; Vargas GDÁ; Hübner SO; Fischer G
    Microb Pathog; 2017 Nov; 112():57-62. PubMed ID: 28943153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against
    Chino T; Nukui Y; Morishita Y; Moriya K
    Antimicrob Resist Infect Control; 2017; 6():122. PubMed ID: 29214017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants.
    E Silva SS; Carvalho JWP; Aires CP; Nitschke M
    J Dairy Sci; 2017 Oct; 100(10):7864-7873. PubMed ID: 28822551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The involvement of rhamnolipids in microbial cell adhesion and biofilm development - an approach for control?
    Nickzad A; Déziel E
    Lett Appl Microbiol; 2014 May; 58(5):447-53. PubMed ID: 24372465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant.
    Venkata Nancharaiah Y; Reddy GK; Lalithamanasa P; Venugopalan VP
    Biofouling; 2012; 28(10):1141-9. PubMed ID: 23092364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties.
    Khalid HF; Tehseen B; Sarwar Y; Hussain SZ; Khan WS; Raza ZA; Bajwa SZ; Kanaras AG; Hussain I; Rehman A
    J Hazard Mater; 2019 Feb; 364():441-448. PubMed ID: 30384254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of Sodium Lauryl Sulfate, Rhamnolipids, and
    Shen Y; Li P; Chen X; Zou Y; Li H; Yuan G; Hu H
    Microb Drug Resist; 2020 Mar; 26(3):290-299. PubMed ID: 31211651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas aeruginosa PA14 Enhances the Efficacy of Norfloxacin against Staphylococcus aureus Newman Biofilms.
    Orazi G; Jean-Pierre F; O'Toole GA
    J Bacteriol; 2020 Aug; 202(18):. PubMed ID: 32661077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of
    Anju VT; Paramanantham P; Siddhardha B; Sruthil Lal SB; Sharan A; Alyousef AA; Arshad M; Syed A
    Int J Nanomedicine; 2019; 14():3861-3874. PubMed ID: 31213806
    [No Abstract]   [Full Text] [Related]  

  • 20. Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms.
    Lefebvre E; Vighetto C; Di Martino P; Larreta Garde V; Seyer D
    Int J Antimicrob Agents; 2016 Aug; 48(2):181-8. PubMed ID: 27424598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.