These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 26825987)
1. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses. Deshmukh AN; Nipanikar-Gokhale P; Jain R Appl Biochem Biotechnol; 2016 May; 179(2):321-31. PubMed ID: 26825987 [TBL] [Abstract][Full Text] [Related]
2. Enhanced production of 2,3-butanediol from sugarcane molasses. Dai JY; Zhao P; Cheng XL; Xiu ZL Appl Biochem Biotechnol; 2015 Mar; 175(6):3014-24. PubMed ID: 25586489 [TBL] [Abstract][Full Text] [Related]
3. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis. Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331 [TBL] [Abstract][Full Text] [Related]
4. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Białkowska AM; Jędrzejczak-Krzepkowska M; Gromek E; Krysiak J; Sikora B; Kalinowska H; Kubik C; Schütt F; Turkiewicz M Appl Microbiol Biotechnol; 2016 Mar; 100(6):2663-76. PubMed ID: 26590588 [TBL] [Abstract][Full Text] [Related]
5. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525 [TBL] [Abstract][Full Text] [Related]
6. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Fu J; Wang Z; Chen T; Liu W; Shi T; Wang G; Tang YJ; Zhao X Biotechnol Bioeng; 2014 Oct; 111(10):2126-31. PubMed ID: 24788512 [TBL] [Abstract][Full Text] [Related]
7. Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Biswas R; Yamaoka M; Nakayama H; Kondo T; Yoshida K; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2012 May; 94(3):651-8. PubMed ID: 22361854 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine. Meng W; Wang R; Xiao D Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762 [TBL] [Abstract][Full Text] [Related]
10. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Jung MY; Park BS; Lee J; Oh MK Bioresour Technol; 2013 Jul; 139():21-7. PubMed ID: 23644066 [TBL] [Abstract][Full Text] [Related]
11. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Wang M; Fu J; Zhang X; Chen T Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279 [TBL] [Abstract][Full Text] [Related]
13. Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase. Zhang X; Zhang R; Yang T; Zhang J; Xu M; Li H; Xu Z; Rao Z World J Microbiol Biotechnol; 2013 Oct; 29(10):1783-9. PubMed ID: 23549901 [TBL] [Abstract][Full Text] [Related]
14. Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources. Koutinas AA; Yepez B; Kopsahelis N; Freire DMG; de Castro AM; Papanikolaou S; Kookos IK Bioresour Technol; 2016 Mar; 204():55-64. PubMed ID: 26773945 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin. Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523 [TBL] [Abstract][Full Text] [Related]
17. Enhanced production of tetramethylpyrazine in Bacillus licheniformis BL1 by bdhA disruption and 2,3-butanediol supplementation. Meng W; Xiao D; Wang R World J Microbiol Biotechnol; 2016 Mar; 32(3):46. PubMed ID: 26873557 [TBL] [Abstract][Full Text] [Related]
18. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis. Erian AM; Gibisch M; Pflügl S Microb Cell Fact; 2018 Nov; 17(1):190. PubMed ID: 30501633 [TBL] [Abstract][Full Text] [Related]
19. 2,3-Butanediol production from cellobiose using exogenous beta-glucosidase-expressing Bacillus subtilis. Tanimura K; Takashima S; Matsumoto T; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2016 Jul; 100(13):5781-9. PubMed ID: 26830100 [TBL] [Abstract][Full Text] [Related]
20. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method. Zhang X; Han R; Bao T; Zhao X; Li X; Zhu M; Yang T; Xu M; Shao M; Zhao Y; Rao Z Microb Cell Fact; 2019 Aug; 18(1):128. PubMed ID: 31387595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]