BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 26826271)

  • 1. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones.
    Kuzniatsova L; Winstone TM; Turner RJ
    Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase.
    Papish AL; Ladner CL; Turner RJ
    J Biol Chem; 2003 Aug; 278(35):32501-6. PubMed ID: 12813051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in
    Fröbel J; Blümmel AS; Drepper F; Warscheid B; Müller M
    J Biol Chem; 2019 Sep; 294(38):13902-13914. PubMed ID: 31341014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of the TatB component of the twin-arginine translocation system.
    Zhang Y; Wang L; Hu Y; Jin C
    Biochim Biophys Acta; 2014 Jul; 1838(7):1881-8. PubMed ID: 24699374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The TatC component of the twin-arginine protein translocase functions as an obligate oligomer.
    Cléon F; Habersetzer J; Alcock F; Kneuper H; Stansfeld PJ; Basit H; Wallace MI; Berks BC; Palmer T
    Mol Microbiol; 2015 Oct; 98(1):111-29. PubMed ID: 26112072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis.
    Li H; Chang L; Howell JM; Turner RJ
    Biochim Biophys Acta; 2010 Jun; 1804(6):1301-9. PubMed ID: 20153451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation.
    Kostecki JS; Li H; Turner RJ; DeLisa MP
    PLoS One; 2010 Feb; 5(2):e9225. PubMed ID: 20169075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase.
    Huang Q; Alcock F; Kneuper H; Deme JC; Rollauer SE; Lea SM; Berks BC; Palmer T
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1958-E1967. PubMed ID: 28223511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Location and mobility of twin arginine translocase subunits in the Escherichia coli plasma membrane.
    Ray N; Nenninger A; Mullineaux CW; Robinson C
    J Biol Chem; 2005 May; 280(18):17961-8. PubMed ID: 15728576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a TatA/TatB binding site on the TatC component of the
    Severi E; Bunoro Batista M; Lannoy A; Stansfeld PJ; Palmer T
    Microbiology (Reading); 2023 Feb; 169(2):. PubMed ID: 36790402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of GTP on system specific chaperone - Twin arginine signal peptide interaction.
    Cherak SJ; Turner RJ
    Biochem Biophys Res Commun; 2015 Oct; 465(4):753-7. PubMed ID: 26299930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-triggered position switching of TatA and TatB during Tat transport in
    Habersetzer J; Moore K; Cherry J; Buchanan G; Stansfeld PJ; Palmer T
    Open Biol; 2017 Aug; 7(8):. PubMed ID: 28814647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twin-arginine-dependent translocation of folded proteins.
    Fröbel J; Rose P; Müller M
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1029-46. PubMed ID: 22411976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of Escherichia coli.
    Orriss GL; Tarry MJ; Ize B; Sargent F; Lea SM; Palmer T; Berks BC
    FEBS Lett; 2007 Aug; 581(21):4091-7. PubMed ID: 17686475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli.
    Bolhuis A; Mathers JE; Thomas JD; Barrett CM; Robinson C
    J Biol Chem; 2001 Jun; 276(23):20213-9. PubMed ID: 11279240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB.
    Blaudeck N; Kreutzenbeck P; Müller M; Sprenger GA; Freudl R
    J Biol Chem; 2005 Feb; 280(5):3426-32. PubMed ID: 15557327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli.
    Chan CS; Howell JM; Workentine ML; Turner RJ
    Biochem Biophys Res Commun; 2006 Apr; 343(1):244-51. PubMed ID: 16540088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A larger TatBC complex associates with TatA clusters for transport of folded proteins across the bacterial cytoplasmic membrane.
    Werner MH; Mehner-Breitfeld D; Brüser T
    Sci Rep; 2024 Jun; 14(1):13754. PubMed ID: 38877109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide.
    Blümmel AS; Drepper F; Knapp B; Eimer E; Warscheid B; Müller M; Fröbel J
    J Biol Chem; 2017 Dec; 292(52):21320-21329. PubMed ID: 29089385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The core TatABC complex of the twin-arginine translocase in Escherichia coli: TatC drives assembly whereas TatA is essential for stability.
    Mangels D; Mathers J; Bolhuis A; Robinson C
    J Mol Biol; 2005 Jan; 345(2):415-23. PubMed ID: 15571732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.