These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 26826271)
1. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones. Kuzniatsova L; Winstone TM; Turner RJ Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271 [TBL] [Abstract][Full Text] [Related]
2. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. Papish AL; Ladner CL; Turner RJ J Biol Chem; 2003 Aug; 278(35):32501-6. PubMed ID: 12813051 [TBL] [Abstract][Full Text] [Related]
3. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in Fröbel J; Blümmel AS; Drepper F; Warscheid B; Müller M J Biol Chem; 2019 Sep; 294(38):13902-13914. PubMed ID: 31341014 [TBL] [Abstract][Full Text] [Related]
4. Solution structure of the TatB component of the twin-arginine translocation system. Zhang Y; Wang L; Hu Y; Jin C Biochim Biophys Acta; 2014 Jul; 1838(7):1881-8. PubMed ID: 24699374 [TBL] [Abstract][Full Text] [Related]
5. The TatC component of the twin-arginine protein translocase functions as an obligate oligomer. Cléon F; Habersetzer J; Alcock F; Kneuper H; Stansfeld PJ; Basit H; Wallace MI; Berks BC; Palmer T Mol Microbiol; 2015 Oct; 98(1):111-29. PubMed ID: 26112072 [TBL] [Abstract][Full Text] [Related]
6. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis. Li H; Chang L; Howell JM; Turner RJ Biochim Biophys Acta; 2010 Jun; 1804(6):1301-9. PubMed ID: 20153451 [TBL] [Abstract][Full Text] [Related]
7. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation. Kostecki JS; Li H; Turner RJ; DeLisa MP PLoS One; 2010 Feb; 5(2):e9225. PubMed ID: 20169075 [TBL] [Abstract][Full Text] [Related]
8. Location and mobility of twin arginine translocase subunits in the Escherichia coli plasma membrane. Ray N; Nenninger A; Mullineaux CW; Robinson C J Biol Chem; 2005 May; 280(18):17961-8. PubMed ID: 15728576 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a TatA/TatB binding site on the TatC component of the Severi E; Bunoro Batista M; Lannoy A; Stansfeld PJ; Palmer T Microbiology (Reading); 2023 Feb; 169(2):. PubMed ID: 36790402 [TBL] [Abstract][Full Text] [Related]
10. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Huang Q; Alcock F; Kneuper H; Deme JC; Rollauer SE; Lea SM; Berks BC; Palmer T Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1958-E1967. PubMed ID: 28223511 [TBL] [Abstract][Full Text] [Related]
11. Influence of GTP on system specific chaperone - Twin arginine signal peptide interaction. Cherak SJ; Turner RJ Biochem Biophys Res Commun; 2015 Oct; 465(4):753-7. PubMed ID: 26299930 [TBL] [Abstract][Full Text] [Related]
12. Substrate-triggered position switching of TatA and TatB during Tat transport in Habersetzer J; Moore K; Cherry J; Buchanan G; Stansfeld PJ; Palmer T Open Biol; 2017 Aug; 7(8):. PubMed ID: 28814647 [TBL] [Abstract][Full Text] [Related]
13. Twin-arginine-dependent translocation of folded proteins. Fröbel J; Rose P; Müller M Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1029-46. PubMed ID: 22411976 [TBL] [Abstract][Full Text] [Related]
14. TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of Escherichia coli. Orriss GL; Tarry MJ; Ize B; Sargent F; Lea SM; Palmer T; Berks BC FEBS Lett; 2007 Aug; 581(21):4091-7. PubMed ID: 17686475 [TBL] [Abstract][Full Text] [Related]
15. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. Bolhuis A; Mathers JE; Thomas JD; Barrett CM; Robinson C J Biol Chem; 2001 Jun; 276(23):20213-9. PubMed ID: 11279240 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB. Blaudeck N; Kreutzenbeck P; Müller M; Sprenger GA; Freudl R J Biol Chem; 2005 Feb; 280(5):3426-32. PubMed ID: 15557327 [TBL] [Abstract][Full Text] [Related]
17. Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli. Chan CS; Howell JM; Workentine ML; Turner RJ Biochem Biophys Res Commun; 2006 Apr; 343(1):244-51. PubMed ID: 16540088 [TBL] [Abstract][Full Text] [Related]
18. A larger TatBC complex associates with TatA clusters for transport of folded proteins across the bacterial cytoplasmic membrane. Werner MH; Mehner-Breitfeld D; Brüser T Sci Rep; 2024 Jun; 14(1):13754. PubMed ID: 38877109 [TBL] [Abstract][Full Text] [Related]
19. Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide. Blümmel AS; Drepper F; Knapp B; Eimer E; Warscheid B; Müller M; Fröbel J J Biol Chem; 2017 Dec; 292(52):21320-21329. PubMed ID: 29089385 [TBL] [Abstract][Full Text] [Related]
20. The core TatABC complex of the twin-arginine translocase in Escherichia coli: TatC drives assembly whereas TatA is essential for stability. Mangels D; Mathers J; Bolhuis A; Robinson C J Mol Biol; 2005 Jan; 345(2):415-23. PubMed ID: 15571732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]